Sex determination in mammals is controlled by the dominance of either pro-testis (SRY-SOX9-FGF9) or pro-ovary (RSPO1-WNT4-FOXL2) genetic pathways during early gonad development in XY and XX embryos, respectively. We have previously shown that early, robust expression of mouse Sry is dependent on the nuclear protein GADD45g. In the absence of GADD45g, XY gonadal sex reversal occurs, associated with a major reduction of Sry levels at 11.
View Article and Find Full Text PDFIn mammalian genomes, differentially methylated regions (DMRs) and histone marks including trimethylation of histone 3 lysine 27 (H3K27me3) at imprinted genes are asymmetrically inherited to control parentally-biased gene expression. However, neither parent-of-origin-specific transcription nor imprints have been comprehensively mapped at the blastocyst stage of preimplantation development. Here, we address this by integrating transcriptomic and epigenomic approaches in mouse preimplantation embryos.
View Article and Find Full Text PDFXY C57BL/6J (B6) mice harboring a -type Y chromosome (Y ), known as B6.Y mice, commonly undergo gonadal sex reversal and develop as phenotypic females. In a minority of cases, B6.
View Article and Find Full Text PDFBacterial artificial chromosomes (BACs) offer a means of manipulating gene expression and tagging gene products in the mammalian genome without the need to alter endogenous gene structure and risk deleterious phenotypic consequences. However, for a BAC clone to be useful for such purposes it must be shown to contain all the regulatory elements required for normal gene expression and allow phenotypic rescue in the absence of an endogenous gene. Here, we report identification of a functional BAC containing Gadd45g, a gene implicated in DNA repair, DNA demethylation and testis determination in mice and exhibiting a broad pattern of embryonic expression.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2018
Mammalian sex determination is controlled by the antagonistic interactions of two genetic pathways: The SRY-SOX9-FGF9 network promotes testis determination partly by opposing proovarian pathways, while RSPO1/WNT-β-catenin/FOXL2 signals control ovary development by inhibiting SRY-SOX9-FGF9. The molecular basis of this mutual antagonism is unclear. Here we show that ZNRF3, a WNT signaling antagonist and direct target of RSPO1-mediated inhibition, is required for sex determination in mice.
View Article and Find Full Text PDFTestis determination in mammals is initiated by expression of SRY in somatic cells of the embryonic gonad. Genetic analyses in the mouse have revealed a requirement for mitogen-activated protein kinase (MAPK) signaling in testis determination: targeted loss of the kinases MAP3K4 and p38 MAPK causes complete XY embryonic gonadal sex reversal. These kinases occupy positions at the top and bottom level, respectively, in the canonical three-tier MAPK-signaling cascade: MAP3K, MAP2K, MAPK.
View Article and Find Full Text PDFDisorders of sex development in the human population range in severity from mild genital defects to gonadal sex reversal. XY female development has been associated with heterozygous mutations in several genes, including SOX9, WT1 and MAP3K1. In contrast, XY sex reversal in mice usually requires complete absence of testis-determining gene products.
View Article and Find Full Text PDFWiley Interdiscip Rev Dev Biol
January 2014
The mammalian gonad is adapted for the production of germ cells and is an endocrine gland that controls sexual maturation and fertility. Gonadal sex reversal, namely, the development of ovaries in an XY individual or testes in an XX, has fascinated biologists for decades. The phenomenon suggests the existence of genetic suppressors of the male and female developmental pathways and molecular genetic studies, particularly in the mouse, have revealed controlled antagonism at the core of mammalian sex determination.
View Article and Find Full Text PDFOtitis media with effusion (OME) is the most common cause of hearing loss in children and tympanostomy to alleviate the condition remains the commonest surgical intervention in children in the developed world. Chronic and recurrent forms of OM are known to have a very significant genetic component, however, until recently little was known of the underlying genes involved. The identification of mouse models of chronic OM has indicated a role of transforming growth factor beta (TGFβ) signalling and its impact on responses to hypoxia in the inflamed middle ear.
View Article and Find Full Text PDFLoss of the kinase MAP3K4 causes mouse embryonic gonadal sex reversal due to reduced expression of the testis-determining gene, Sry. However, because of widespread expression of MAP3K4, the cellular basis of this misregulation was unclear. Here, we show that mice lacking Gadd45γ also exhibit XY gonadal sex reversal caused by disruption to Sry expression.
View Article and Find Full Text PDFIn mammals, the Y chromosome is a dominant male determinant, causing the bipotential gonad to develop as a testis. Recently, cases of familial and spontaneous 46,XY disorders of sex development (DSD) have been attributed to mutations in the human gene encoding mitogen-activated protein kinase kinase kinase 1, MAP3K1, a component of the mitogen-activated protein kinase (MAPK) signal transduction pathway. In individuals harbouring heterozygous mutations in MAP3K1, dysregulation of MAPK signalling was observed in lymphoblastoid cell lines, suggesting a causal role for these mutations in disrupting XY sexual development.
View Article and Find Full Text PDFSex determination in mammals is controlled by the presence or absence of the Y-linked gene SRY. In the developing male (XY) gonad, sex-determining region of the Y (SRY) protein acts to up-regulate expression of the related gene, SOX9, a transcriptional regulator that in turn initiates a downstream pathway of testis development, whilst also suppressing ovary development. Despite the requirement for a number of transcription factors and secreted signalling molecules in sex determination, intracellular signalling components functioning in this process have not been defined.
View Article and Find Full Text PDFThe mammalian gonad arises as a bipotential primordium from which a testis or ovary develops depending on the chromosomal sex of the individual. We have previously used DNA microarrays to screen for novel genes controlling the developmental fate of the indifferent embryonic mouse gonad. Maestro (Mro), which encodes a HEAT-repeat protein, was originally identified as a gene exhibiting sexually dimorphic expression during mouse gonad development.
View Article and Find Full Text PDFSecreted frizzled-related proteins (Sfrps) are antagonists of WNT signalling implicated in a variety of biological processes. However, there are no reports of a direct role for Sfrps in embryonic organogenesis in mammals. Using in vivo loss-of-function studies we report here for the first time a redundant role for Sfrp1 and Sfrp2 in embryonic sexual development of the mouse.
View Article and Find Full Text PDFDominantly acting mutations that produce visible phenotypes are frequently recovered, either during routine maintenance of colonies or from mutagenesis experiments. We have studied 12 dominant mouse mutations that cause a tail dysmorphology, a coat spotting phenotype, or a combination of these. The majority of these mutations act in a semidominant manner with the homozygous state associated with embryonic lethality and a visible phenotype at or before midgestation.
View Article and Find Full Text PDFAlthough the gross embryology of inner ear development has been documented for several different vertebrate species at a descriptive level, our understanding of the molecular mechanisms involved remains rudimentary. Therefore, we have used cDNA subtraction and normalization procedures to define genes upregulated in the 13.5dpc mouse inner ear, a developmental stage where inner ear morphogenesis and tissue remodeling is active and differentiation of future hair cells is being initiated.
View Article and Find Full Text PDF