Quantifying muscle and joint forces over a broad range of weight bearing loads during exercise may provide data required to improve prosthetic materials and better protect against muscle and bone loss. Collectively, leg intramuscular pressure (IMP), ground reaction force (GRF), and the instrumented tibial tray force measurements provide a comprehensive assessment of leg muscle and joint biomechanical effects of gravity during exercise. Titration of body weight (BW) by lower body negative pressure (LBNP) and lower body positive pressure (LBPP) can reproducibly modulate IMP within leg muscle compartments.
View Article and Find Full Text PDFThough changes in normal joint motions and loads (e.g., following anterior cruciate ligament injury) contribute to the development of knee osteoarthritis, the precise mechanism by which these changes induce osteoarthritis remains unknown.
View Article and Find Full Text PDFAdvances in imaging technology and computer-assisted design (CAD) have recently enabled the introduction of patient-specific knee implant designs that hold the potential to improve functional performance on the basis of patient-specific geometries, namely a patient-specific sagittal and coronal curvature, as well as enhanced bone preservation. The objective of this study was to investigate the use of a novel implant design utilizing a patient specific sagittal J-curve on the femoral component combined with a novel constant, patient-derived femoral coronal curvature and to assess tibio-femoral contact area and contact stress on a femur matched curved tibial polyethylene insert. Mean contact area and standard deviations were 81+/-5, 96+/-5 and 74+/-4 mm(2) for the heel strike, toe off and mid-stance positions, respectively.
View Article and Find Full Text PDFMicromotion has long been associated with wear of polyethylene tibial inserts, potentially causing failure of unicompartmental knee replacement systems. One cause of micromotion is the locking mechanism between the undersurface of the polyethylene and the tibial tray. The objective of this study was to investigate the use of new novel lock designs for reducing the micromotion associated with a patient specific tibial implant.
View Article and Find Full Text PDF