Total, whole-atom, individual and integrated Compton scattering cross sections and Compton energy absorption scattering cross sections are evaluated for light elements, such as, H, C, N, O, P, and Ca, with relativistic impulse approximation methods. Most of the phantom materials composed of these elements, which are the basic constituents of biological soft-tissue and attenuation through them, provides potential source of information. Compton scattering cross-sections for few biological materials, such as, HO, CH, CH, CHO, CHNO, CHO, CHO, [Ca(PO)]Ca (OH) of medical interest, have been evaluated with the use of double differential scattering cross-section based on impulse approximation.
View Article and Find Full Text PDFSamples of orange patinas found on a limestone window tracery and an ornament of the Batalha Monastery have been investigated by X-ray micro-diffractometry (μ-XRD) and low-vacuum scanning electron microscopy coupled with energy dispersive spectrometry (LV-SEM + EDS). The aim of the study was to determine the composition of the layered patinas, assess whether they have been intentionally applied or naturally formed, and study their degradation patterns. Preliminary results revealed that the orange patinas on the window tracery and the ornament showed different compositions and appearance, suggesting distinct formation pathways.
View Article and Find Full Text PDFThe artwork "Smoke Rings: Two Concentric Tunnels, Non-Communicating" by Bruce Nauman represents a case study of corrosion of a black patina-coated Al-alloy contemporary artwork. The main concern over this artwork was the widespread presence of white spots on its surface. Alloy substrate, patina, and white spots were characterized by means of energy-dispersive X-ray fluorescence and scanning electron microscopy with energy-dispersive spectroscopy.
View Article and Find Full Text PDF