Organ Dose Modulation or ODM (GE Healthcare, Milwaukee, WI) was evaluated to characterize changes in CTDIvol, image noise, effective dose, and organ dose saving to patients. Three separate investigations were completed: a tube current modulation phantom was scanned with and without ODM, a CTDIvol phantom was scanned with ODM, and Monte Carlo simulations were performed. ODM was found to reduce the CTDIvol by approximately 20% whilst increasing the noise by approximately 14%.
View Article and Find Full Text PDFIn light of the proposal from the International Commission on Radiological Protection for a lowered eye dose limit, now adopted by a European Union Council Directive, lead glasses may be required for some staff in interventional radiology to ensure that occupational exposure is as low as reasonably practicable. To investigate the lens protection offered from various models of lead glasses exposed to X-rays coming from a source to the left and below, calibrated radiochromic film was positioned in the lens area of a head phantom. When the source-to-eye angles were large, the dose reduction factors (the ratio of eye dose without protection to dose with protection) to the right lens area were much lower than to the left lens area, particularly with smaller-lensed glasses, due to gaps in protection between the face and the glasses.
View Article and Find Full Text PDFA practical method for skin dose estimation for interventional cardiology patients has been developed to inform pre-procedure planning and post-procedure patient management. Absorbed dose to the patient skin for certain interventional radiology procedures can exceed thresholds for deterministic skin injury, requiring documentation within the patient notes and appropriate patient follow-up. The primary objective was to reduce uncertainty associated with current methods, particularly surrounding field overlap.
View Article and Find Full Text PDF