Publications by authors named "Nick Ramsey"

Implantable brain-computer interfaces (iBCIs) hold great promise for individuals with severe paralysis and are advancing toward commercialization. The features required to achieve autonomous use of an iBCI may be under recognized in traditional academic measures of iBCI function and deserve further consideration to achieve successful clinical translation and patient adoption. Here, we present four key considerations to achieve autonomous use, reflecting the authors' perspectives based on discussions during various sessions and workshops across the 10th International BCI Society Meeting, Brussels, 2023: (1) immediate use, (2) easy to use, (3) continuous use, and (4) stable system use.

View Article and Find Full Text PDF

Brain-computer interfaces (BCIs) are evolving toward higher electrode count and fully implantable solutions, which require extremely low power densities (<15mW cm). To achieve this target, and allow for a large and scalable number of channels, flexible electronics can be used as a multiplexing interface. This work introduces an active analog front-end fabricated with amorphous Indium-Gallium-Zinx-Oxide (a-IGZO) Thin-Film Transistors (TFTs) on foil capable of active matrix multiplexing.

View Article and Find Full Text PDF

Background: fMRI in clinical settings faces challenges affecting activity maps. Template matching can screen for abnormal results by providing an objective metric of activity map quality. This research tests how sample size, age, or gender-specific templates, and unilateral templates affect template matching results.

View Article and Find Full Text PDF

Background And Objectives: Brain-computer interfaces () hold promise as augmentative and alternative communication technology for people with severe motor and speech impairment (locked-in syndrome) due to neural disease or injury. Although such BCIs should be available 24/7, to enable communication at all times, feasibility of nocturnal BCI use has not been investigated. Here, we addressed this question using data from an individual with amyotrophic lateral sclerosis (ALS) who was implanted with an electrocorticography-based BCI that enabled the generation of click-commands for spelling words and call-caregiver signals.

View Article and Find Full Text PDF

Subdural electrocorticography (ECoG) is a valuable technique for neuroscientific research and for emerging neurotechnological clinical applications. As ECoG grids accommodate increasing numbers of electrodes and higher densities with new manufacturing methods, the question arises at what point the benefit of higher density ECoG is outweighed by spatial oversampling. To clarify the optimal spacing between ECoG electrodes, in the current study we evaluate how ECoG grid density relates to the amount of non-shared neurophysiological information between electrode pairs, focusing on the sensorimotor cortex.

View Article and Find Full Text PDF

Objective: Brain-Computer Interfaces (BCIs) hold significant promise for restoring communication in individuals with partial or complete loss of the ability to speak due to paralysis from amyotrophic lateral sclerosis (ALS), brainstem stroke, and other neurological disorders. Many of the approaches to speech decoding reported in the BCI literature have required time-aligned target representations to allow successful training - a major challenge when translating such approaches to people who have already lost their voice.

Approach: In this pilot study, we made a first step toward scenarios in which no ground truth is available.

View Article and Find Full Text PDF

The durability of communication with the use of brain-computer interfaces in persons with progressive neurodegenerative disease has not been extensively examined. We report on 7 years of independent at-home use of an implanted brain-computer interface for communication by a person with advanced amyotrophic lateral sclerosis (ALS), the inception of which was reported in 2016. The frequency of at-home use increased over time to compensate for gradual loss of control of an eye-gaze-tracking device, followed by a progressive decrease in use starting 6 years after implantation.

View Article and Find Full Text PDF

Speech brain-computer interfaces (BCIs) have the potential to augment communication in individuals with impaired speech due to muscle weakness, for example in amyotrophic lateral sclerosis (ALS) and other neurological disorders. However, to achieve long-term, reliable use of a speech BCI, it is essential for speech-related neural signal changes to be stable over long periods of time. Here we study, for the first time, the stability of speech-related electrocorticographic (ECoG) signals recorded from a chronically implanted ECoG BCI over a 12 month period.

View Article and Find Full Text PDF

Neuropsychological studies have demonstrated that meningioma patients frequently exhibit cognitive deficits before surgery and show only limited improvement after surgery. Combining neuropsychological with functional imaging measurements can shed more light on the impact of surgery on cognitive brain function. We aimed to evaluate whether surgery affects cognitive brain activity in such a manner that it may mask possible changes in cognitive functioning measured by neuropsychological tests.

View Article and Find Full Text PDF

Brain-computer interfaces (BCIs) that reconstruct and synthesize speech using brain activity recorded with intracranial electrodes may pave the way toward novel communication interfaces for people who have lost their ability to speak, or who are at high risk of losing this ability, due to neurological disorders. Here, we report online synthesis of intelligible words using a chronically implanted brain-computer interface (BCI) in a man with impaired articulation due to ALS, participating in a clinical trial (ClinicalTrials.gov, NCT03567213) exploring different strategies for BCI communication.

View Article and Find Full Text PDF

Several studies have shown that mouth movements related to the pronunciation of individual phonemes are represented in the sensorimotor cortex. This would theoretically allow for brain computer interfaces that are capable of decoding continuous speech by training classifiers based on the activity in the sensorimotor cortex related to the production of individual phonemes. To address this, we investigated the decodability of trials with individual and paired phonemes (pronounced consecutively with one second interval) using activity in the sensorimotor cortex.

View Article and Find Full Text PDF

Brain-computer interfaces (BCIs) can be used to control assistive devices by patients with neurological disorders like amyotrophic lateral sclerosis (ALS) that limit speech and movement. For assistive control, it is desirable for BCI systems to be accurate and reliable, preferably with minimal setup time. In this study, a participant with severe dysarthria due to ALS operates computer applications with six intuitive speech commands via a chronic electrocorticographic (ECoG) implant over the ventral sensorimotor cortex.

View Article and Find Full Text PDF

Background: Brain-computer interfaces (BCIs) can restore communication in movement- and/or speech-impaired individuals by enabling neural control of computer typing applications. Single command "click" decoders provide a basic yet highly functional capability.

Methods: We sought to test the performance and long-term stability of click-decoding using a chronically implanted high density electrocorticographic (ECoG) BCI with coverage of the sensorimotor cortex in a human clinical trial participant (ClinicalTrials.

View Article and Find Full Text PDF

Objective: Electrocorticography (ECoG)-based brain-computer interface (BCI) systems have the potential to improve quality of life of people with locked-in syndrome (LIS) by restoring their ability to communicate independently. Before implantation of such a system, it is important to localize ECoG electrode target regions. Here, we assessed the predictive value of functional magnetic resonance imaging (fMRI) for the localization of suitable target regions on the sensorimotor cortex for ECoG-based BCI in people with locked-in syndrome.

View Article and Find Full Text PDF

Background: Stroke causes alterations in the sensorimotor rhythms (SMRs) of the brain. However, little is known about the influence of lesion location on the SMRs. Understanding this relationship is relevant for the use of SMRs in assistive and rehabilitative therapies, such as Brain-Computer Interfaces (BCIs).

View Article and Find Full Text PDF

In recent years, the majority of the population has become increasingly reliant on continuous and independent control of smart devices to conduct activities of daily living. Upper extremity movement is typically required to generate the motor outputs that control these interfaces, such as rapidly and accurately navigating and clicking a mouse, or activating a touch screen. For people living with tetraplegia, these abilities are lost, significantly compromising their ability to interact with their environment.

View Article and Find Full Text PDF

Development of brain-computer interface (BCI) technology is key for enabling communication in individuals who have lost the faculty of speech due to severe motor paralysis. A BCI control strategy that is gaining attention employs speech decoding from neural data. Recent studies have shown that a combination of direct neural recordings and advanced computational models can provide promising results.

View Article and Find Full Text PDF

Recent studies have shown that speech can be reconstructed and synthesized using only brain activity recorded with intracranial electrodes, but until now this has only been done using retrospective analyses of recordings from able-bodied patients temporarily implanted with electrodes for epilepsy surgery. Here, we report online synthesis of intelligible words using a chronically implanted brain-computer interface (BCI) in a clinical trial participant (ClinicalTrials.gov, NCT03567213) with dysarthria due to amyotrophic lateral sclerosis (ALS).

View Article and Find Full Text PDF

Unlabelled: Neuronal oscillations at about 10 Hz, called alpha oscillations, are often thought to arise from synchronous activity across occipital cortex, reflecting general cognitive states such as arousal and alertness. However, there is also evidence that modulation of alpha oscillations in visual cortex can be spatially specific. Here, we used intracranial electrodes in human patients to measure alpha oscillations in response to visual stimuli whose location varied systematically across the visual field.

View Article and Find Full Text PDF
Article Synopsis
  • Electrocorticography (ECoG) has become important for developing neural interfaces, with electrodes usually placed under (subdural) or on (epidural) the dura mater.
  • Choosing between epidural and subdural placements involves weighing potential complications and signal quality, as epidural might have lower risks but poor signal quality due to the dura acting as an attenuator.
  • A literature review indicated that while epidural signals may be weaker, their decodability remains largely unaffected, and serious complications are comparable for both placement types; thus, both methods can be considered for long-term use in ECoG.
View Article and Find Full Text PDF

Implantable brain-computer interfaces (BCIs) promise to be a viable means to restore communication in individuals with locked-in syndrome (LIS). In 2016, we presented the world-first fully implantable BCI system that uses subdural electrocorticography electrodes to record brain signals and a subcutaneous amplifier to transmit the signals to the outside world, and that enabled an individual with LIS to communicate via a tablet computer by selecting icons in spelling software. For future clinical implementation of implantable communication-BCIs, however, much work is still needed, for example, to validate these systems in daily life settings with more participants, and to improve the speed of communication.

View Article and Find Full Text PDF

Speech decoding from brain activity can enable development of brain-computer interfaces (BCIs) to restore naturalistic communication in paralyzed patients. Previous work has focused on development of decoding models from isolated speech data with a clean background and multiple repetitions of the material. In this study, we describe a novel approach to speech decoding that relies on a generative adversarial neural network (GAN) to reconstruct speech from brain data recorded during a naturalistic speech listening task (watching a movie).

View Article and Find Full Text PDF

Completely locked-in patients suffer from paralysis affecting every muscle in their body, reducing their communication means to brain-computer interfaces (BCIs). State-of-the-art BCIs have a slow spelling rate, which inevitably places a burden on patients' quality of life. Novel techniques address this problem by following a bio-mimetic approach, which consists of decoding sensory-motor cortex (SMC) activity that underlies the movements of the vocal tract's articulators.

View Article and Find Full Text PDF

Neural responses to visual stimuli exhibit complex temporal dynamics, including subadditive temporal summation, response reduction with repeated or sustained stimuli (adaptation), and slower dynamics at low contrast. These phenomena are often studied independently. Here, we demonstrate these phenomena within the same experiment and model the underlying neural computations with a single computational model.

View Article and Find Full Text PDF