Publications by authors named "Nick Quade"

Ribosomes have been suggested to directly control gene regulation, but regulatory roles for ribosomal RNA (rRNA) remain largely unexplored. Expansion segments (ESs) consist of multitudes of tentacle-like rRNA structures extending from the core ribosome in eukaryotes. ESs are remarkably variable in sequence and size across eukaryotic evolution with largely unknown functions.

View Article and Find Full Text PDF

The mechanisms underlying the biogenesis of the structurally unique, binuclear Cu•Cu redox center (Cu) on subunit II (CoxB) of cytochrome oxidases have been a long-standing mystery. Here, we reconstituted the CoxB•Cu center in vitro from -CoxB and the -forms of the copper transfer chaperones ScoI and PcuC. A previously unknown, highly stable ScoI•Cu•CoxB complex was shown to be rapidly formed as the first intermediate in the pathway.

View Article and Find Full Text PDF

Hepatitis C virus (HCV), a widespread human pathogen, is dependent on a highly structured 5'-untranslated region of its mRNA, referred to as internal ribosome entry site (IRES), for the translation of all of its proteins. The HCV IRES initiates translation by directly binding to the small ribosomal subunit (40S), circumventing the need for many eukaryotic translation initiation factors required for mRNA scanning. Here we present the cryo-EM structure of the human 40S ribosomal subunit in complex with the HCV IRES at 3.

View Article and Find Full Text PDF

An improved understanding of enzymes' catalytic proficiency and stereoselectivity would further enable applications in chemistry, biocatalysis and industrial biotechnology. We use a chemical probe to dissect individual catalytic steps of enoyl-thioester reductases (Etrs), validating an active site tyrosine as the cryptic proton donor and explaining how it had eluded definitive identification. This information enabled the rational redesign of Etr, yielding mutants that create products with inverted stereochemistry at wild type-like turnover frequency.

View Article and Find Full Text PDF

Two critical cysteine residues in the copper-A site (Cu(A)) on subunit II (CoxB) of bacterial cytochrome c oxidase lie on the periplasmic side of the cytoplasmic membrane. As the periplasm is an oxidizing environment as compared with the reducing cytoplasm, the prediction was that a disulfide bond formed between these cysteines must be eliminated by reduction prior to copper insertion. We show here that a periplasmic thioredoxin (TlpA) acts as a specific reductant not only for the Cu(2+) transfer chaperone ScoI but also for CoxB.

View Article and Find Full Text PDF

AlsR from Bacillus subtilis, a member of the LysR-type transcriptional regulator (LTTR) family, regulates the transcription of the alsSD operon encoding enzymes involved in acetoin biosynthesis. LTTRs represent the largest known family of transcriptional regulators in bacteria. In this study, AlsR82-302S100A, representing the effector domain, was produced in Escherichia coli, purified and crystallized using the sitting-drop vapour-diffusion method in the presence of 2.

View Article and Find Full Text PDF

Pathogens often rely on thermosensing to adjust virulence gene expression. In yersiniae, important virulence-associated traits are under the control of the master regulator RovA, which uses a built-in thermosensor to control its activity. Thermal upshifts encountered upon host entry induce conformational changes in the RovA dimer that attenuate DNA binding and render the protein more susceptible to proteolysis.

View Article and Find Full Text PDF

Polyketides are structurally diverse and medically important natural products that have various biological activities. During biosynthesis, chain elongation uses activated dicarboxylic acid building blocks, and their availability therefore limits side chain variation in polyketides. Recently, the crotonyl-CoA carboxylase-reductase (CCR) class of enzymes was identified in primary metabolism and was found to be involved in extender-unit biosynthesis of polyketides.

View Article and Find Full Text PDF

In enteropathogenic Yersinia, the expression of several early-phase virulence factors such as invasin is tightly regulated in response to environmental cues. The responsible regulatory network is complex, involving several regulatory RNAs and proteins such as the LysR-type transcription regulator (LTTR) RovM. In this study, the crystal structure of the effector-binding domain (EBD) of RovM, the first LTTR protein described as being involved in virulence regulation, was determined at a resolution of 2.

View Article and Find Full Text PDF

Pseudomonas aeruginosa is responsible for around 10% of all hospital-acquired infections and the single most important pathogen of cystic fibrosis lungs. P. aeruginosa has high intrinsic and acquired antibiotic resistance, due to the extrusion of antibiotics by multidrug efflux pumps.

View Article and Find Full Text PDF