Publications by authors named "Nick Platt"

Sandhoff disease (SD) is a progressive neurodegenerative lysosomal storage disorder characterized by GM2 ganglioside accumulation as a result of mutations in the gene, which encodes the β-subunit of the enzyme β-hexosaminidase. Lysosomal storage of GM2 triggers inflammation in the CNS and periphery. The NLRP3 inflammasome is an important coordinator of pro-inflammatory responses, and we have investigated its regulation in murine SD.

View Article and Find Full Text PDF

Niemann-Pick type C1 (NPC1) protein is a multimembrane spanning protein of the lysosome limiting membrane that facilitates intracellular cholesterol and sphingolipid transport. Loss-of-function mutations in the NPC1 protein cause Niemann-Pick disease type C1, a lysosomal storage disorder characterized by the accumulation of cholesterol and sphingolipids within lysosomes. To investigate whether the NPC1 protein could also play a role in the maturation of the endolysosomal pathway, here, we have investigated its role in a lysosome-related organelle, the melanosome.

View Article and Find Full Text PDF

: Niemann-Pick disease type C1 (NPC1) is a neurodegenerative lysosomal storage disorder characterized by the accumulation of multiple lipids in the late endosome/lysosomal system and reduced acidic store calcium. The lysosomal system regulates key aspects of iron homeostasis, which prompted us to investigate whether there are hematological abnormalities and iron metabolism defects in NPC1. : Iron-related hematological parameters, systemic and tissue metal ion and relevant hormonal and proteins levels, expression of specific pro-inflammatory mediators and erythrophagocytosis were evaluated in an authentic mouse model and in a large cohort of NPC patients.

View Article and Find Full Text PDF

Mycobacterium tuberculosis (Mtb) survives and replicates within host macrophages (MΦ) and subverts multiple antimicrobial defense mechanisms. Previously, we reported that lipids shed by pathogenic mycobacteria inhibit NPC1, the lysosomal membrane protein deficient in the lysosomal storage disorder Niemann-Pick disease type C (NPC). Inhibition of NPC1 leads to a drop in lysosomal calcium levels, blocking phagosome-lysosome fusion leading to mycobacterial survival.

View Article and Find Full Text PDF

 Blockade of tumour necrosis factor (anti-TNF) is effective in patients with Crohn's Disease but has been associated with infection risk and neurological complications such as demyelination. Niemann-Pick disease Type C1 (NPC1) is a lysosomal storage disorder presenting in childhood with neurological deterioration, liver damage and respiratory infections. Some NPC1 patients develop severe Crohn's disease.

View Article and Find Full Text PDF

Niemann-Pick disease type C (NPC) is a rare lysosomal storage disease caused by mutations in either the or genes. Mutations in the gene lead to the majority of clinical cases (95%); however, the function of NPC1 remains unknown. To gain further insights into the biology of NPC1, we took advantage of the homology between the human NPC1 protein and its yeast orthologue, Niemann-Pick C-related protein 1 (Ncr1).

View Article and Find Full Text PDF

The mechanistic target of rapamycin complex 1 (mTORC1) is recruited to the lysosome by Rag guanosine triphosphatases (GTPases) and regulates anabolic pathways in response to nutrients. We found that MiT/TFE transcription factors-master regulators of lysosomal and melanosomal biogenesis and autophagy-control mTORC1 lysosomal recruitment and activity by directly regulating the expression of RagD. In mice, this mechanism mediated adaptation to food availability after starvation and physical exercise and played an important role in cancer growth.

View Article and Find Full Text PDF

Background: Tuberculosis remains a major global health concern. The ability to prevent phagosome-lysosome fusion is a key mechanism by which intracellular mycobacteria, including , achieve long-term persistence within host cells. The mechanisms underpinning this key intracellular pro-survival strategy remain incompletely understood.

View Article and Find Full Text PDF

Objective: Patients with Niemann-Pick disease type C1 (NPC1), a lysosomal lipid storage disorder that causes neurodegeneration and liver damage, can present with IBD, but neither the significance nor the functional mechanism of this association is clear. We studied bacterial handling and antibacterial autophagy in patients with NPC1.

Design: We characterised intestinal inflammation in 14 patients with NPC1 who developed IBD.

View Article and Find Full Text PDF

Lysosomal storage diseases are inherited monogenic disorders in which lysosome function is compromised. Although individually very rare, they occur at a collective frequency of approximately one in five thousand live births and usually have catastrophic consequences for health. The lysosomal storage diseases Niemann-Pick disease type C (NPC) is caused by mutations predominantly in the lysosomal integral membrane protein NPC1 and clinically presents as a progressive neurodegenerative disorder.

View Article and Find Full Text PDF

The second messenger NAADP triggers Ca(2+) release from endo-lysosomes. Although two-pore channels (TPCs) have been proposed to be regulated by NAADP, recent studies have challenged this. By generating the first mouse line with demonstrable absence of both Tpcn1 and Tpcn2 expression (Tpcn1/2(-/-)), we show that the loss of endogenous TPCs abolished NAADP-dependent Ca(2+) responses as assessed by single-cell Ca(2+) imaging or patch-clamp of single endo-lysosomes.

View Article and Find Full Text PDF

Lysosomal storage diseases (LSDs) are mainly caused by the defective activity of lysosomal hydrolases. A sub-class of LSDs are the sphingolipidoses, in which sphingolipids accumulate intra-cellularly. We here discuss the role of innate immunity in the sphingolipidoses, and compare the pathways of activation in two classical sphingolipidoses, namely Gaucher disease and Sandhoff disease, and in Niemann-Pick C disease, in which the main storage material is cholesterol but sphingolipids also accumulate.

View Article and Find Full Text PDF

Phagocytosis is a critical biological activity through which the host can protect itself from infectious and non-infectious environmental particles and remove unwanted host cells in order to maintain tissue homeostasis. Phagocytosis is an ancient, conserved process that is apparent in all multicellular organisms. The process of phagocytosis requires the recognition of ligands on particles by specific receptors expressed by the phagocyte that promote internalization via reorganization of cytoskeletal elements and directed formation of the phagosome.

View Article and Find Full Text PDF

Axon loss in the CNS is characteristic of many neurodegenerative diseases but the mechanisms of axon degeneration are poorly understood. In particular, we know little of the inflammatory response triggered by CNS axon degeneration with comparison to that provoked by death of the neuronal cell body. We show that Wallerian degeneration of the mouse optic nerve induces transcription of TGF-beta1 and TNF-alpha, but not pro-inflammatory cytokines IL-1beta and IL-6 and microglial activation.

View Article and Find Full Text PDF

Sulfoglycolipids are present on the surface of a variety of cells. The sulfatide SM4s is increased in lung, renal, and colon cancer and is associated with an adverse prognosis, possibly due to a low immunoreactivity of the tumor. As macrophages significantly contribute to the inflammatory infiltrate in malignancies, we postulated that SM4s may modulate macrophage function.

View Article and Find Full Text PDF

Development of invariant natural killer T (iNKT) cells requires the presentation of lipid ligand(s) by CD1d molecules in the thymus. The glycosphingolipid (GSL) isoglobotrihexosylceramide (iGb3) has been proposed as the natural iNKT cell-selecting ligand in the thymus and to be involved in peripheral activation of iNKT cells by dendritic cells (DCs). However, there is no direct biochemical evidence for the presence of iGb3 in mouse or human thymus or DCs.

View Article and Find Full Text PDF

Dendritic cells (DC) function at the interface of innate and acquired immunity and are uniquely sensitive to specific stimuli. Pattern recognition receptors (PRR) on these cells are critically important because of their ability to recognise and initiate responses to conserved microbial-associated molecular signatures. With the exception of Toll-like receptors (TLR), we know relatively little about the specific distribution of other PRR amongst populations of DC.

View Article and Find Full Text PDF

Epithelia are positioned at a critical interface to prevent invasion by microorganisms from the environment. Pattern recognition receptors are important components of innate immunity because of their ability to interact with specific microbe-associated structures and initiate immune responses. Several distinct groups of receptors have been recognized.

View Article and Find Full Text PDF

The macrophage scavenger receptor (SR-A) is a multifunctional receptor that is associated with several important pathological conditions, including atherosclerosis. In this study, we show, using a sterile peritonitis model, that it can regulate the inflammatory response. SR-A null mice display an increased initial granulocytic infiltration because of overproduction of the CXC chemokines, MIP-2 and keratinocyte-derived cytokine.

View Article and Find Full Text PDF

Nonobese diabetic, severe combined immunodeficient (NOD/SCID) mice are extensively used to assess in vivo potentials for human cellular differentiation, development, and neophysiology. They are not only deficient in T and B cells, but also exhibit macrophage dysfunction and an absence of circulating complement. However, the survival of engrafted human mesenchymal stem cells (hMSCs) is limited and minimal mature bone tissue develops from implanted hMSCs in this model.

View Article and Find Full Text PDF

The class A scavenger receptor (SR-A) is a multifunctional trimeric membrane glycoprotein involved in atherogenesis. The mature receptor can mediate the binding and internalization of a number of specific ligands, including modified low-density lipoprotein. We have investigated the effects of inhibiting N-glycan processing on SR-A expression, distribution, and activity in the murine macrophage cell line RAW264.

View Article and Find Full Text PDF

Wallerian degeneration, the disintegration of the distal part of an injured axon, is an important event in many neurodegenerative diseases. We studied Wallerian degeneration in dorsal root ganglion (DRG) explants in culture by separating neurites from their cell bodies with a scalpel. The severed neurites showed Annexin V positive staining, that spreads distally with a rate comparable to that of slow axonal transport in intact neurons in vivo.

View Article and Find Full Text PDF

The class A macrophage scavenger receptor (SR-A) is the prototypic example of a group of plasma membrane receptors collectively known as scavenger receptors. SR-A displays the ability to bind and endocytose large quantities of modified lipoprotein. Hence, it is thought to be one of the main receptors involved in mediating lipid influx into macrophages (Mphi), which promotes their conversion into foam cells that are abundant in the atherosclerotic lesion.

View Article and Find Full Text PDF