Publications by authors named "Nick P Rowe"

Climbing plants exhibit specialized shoots, called "searchers", to cross spaces and alternate between spatially discontinuous supports in their natural habitats. To achieve this task, searcher shoots combine both primary and secondary growth processes of their stems in order to support, orientate and explore their extensional growth into the environment. Currently, there is an increasing interest in developing models to describe plant growth and posture.

View Article and Find Full Text PDF

Climbing plants can be extremely adaptable to diverse habitats and capable of colonising perturbed, unstructured, and even moving environments. The timing of the attachment process, whether instantaneous (e.g.

View Article and Find Full Text PDF

Tropical vines and lianas have evolved mechanisms to avoid mechanical damage during their climbing life histories. We explore the mechanical properties and stem development of a tropical climber that develops trellises in tropical rain forest canopies. We measured the young stems of (Apocynaceae) that construct complex trellises self-supporting shoots, attached stems, and unattached pendulous stems.

View Article and Find Full Text PDF

Many climbing plants have microspines on their stems, which facilitate attachment and prevent slipping and falling from host plant supports. Extending via growth through complex environments and anchoring stems to substrates with minimal contact forces are key benefits for climbing plants. Microspines are also highly desirable features for new technologies and applications in soft robotics.

View Article and Find Full Text PDF

Climbing plants must reach supports and navigate gaps to colonize trees. This requires a structural organization ensuring the rigidity of so-called 'searcher' stems. Cacti have succulent stems adapted for water storage in dry habitats.

View Article and Find Full Text PDF

Climbing plants are being increasingly viewed as models for bioinspired growing robots capable of spanning voids and attaching to diverse substrates. We explore the functional traits of the climbing cactus (Cactaceae) from the Atlantic forest of Brazil and discuss the potential of these traits for robotics applications. The plant is capable of growing through highly unstructured habitats and attaching to variable substrates including soil, leaf litter, tree surfaces, rocks, and fine branches of tree canopies in wind-blown conditions.

View Article and Find Full Text PDF

Tropical rain forests (TRF) are the most diverse terrestrial biome on Earth, but the diversification dynamics of their constituent growth forms remain largely unexplored. Climbing plants contribute significantly to species diversity and ecosystem processes in TRF. We investigate the broad-scale patterns and drivers of species richness as well as the diversification history of climbing and non-climbing palms (Arecaceae).

View Article and Find Full Text PDF

In the Neotropics, the genus Hydrangea of the popular ornamental hortensia family is represented by climbing species that strongly cling to their support surface by means of adhesive roots closely positioned along specialized anchoring stems. These root-climbing hortensia species belong to the nearly exclusive American Hydrangea section Cornidia and generally are long lianescent climbers that mostly flower and fructify high in the host tree canopy. The Mexican species Hydrangea seemannii, however, encompasses not only long lianescent climbers of large vertical rock walls and coniferous trees, but also short 'shrub-like' climbers on small rounded boulders.

View Article and Find Full Text PDF

Background And Aims: The order Piperales has the highest diversity of growth forms among the earliest angiosperm lineages, including trees, shrubs, climbers and herbs. However, within the perianth-bearing Piperales (Asarum, Saruma, Lactoris, Hydnora, Prosopanche, Thottea and Aristolochia), climbing species only occur in the most species-rich genus Aristolochia. This study traces anatomical and morphological traits among these lineages, to detect trends in growth form evolution and developmental processes.

View Article and Find Full Text PDF

Domestication can influence many functional traits in plants, from overall life-history and growth form to wood density and cell wall ultrastructure. Such changes can increase fitness of the domesticate in agricultural environments but may negatively affect survival in the wild. We studied effects of domestication on stem biomechanics in manioc by comparing domesticated and ancestral wild taxa from two different regions of greater Amazonia.

View Article and Find Full Text PDF

Premise Of The Study: A large range of growth forms is a notable aspect of angiosperm diversity and arguably a key element of their success. However, few studies within a phylogenetic context have explored how anatomical, developmental, and biomechanical traits are linked with growth form evolution. Aristolochia (∼500 species) consists predominantly of climbers, but a handful of shrub-like species are known from Aristolochia subgenus Isotrema (hereafter, shortened to Isotrema).

View Article and Find Full Text PDF

Climbing palms in the Arecoideae (Desmoncus) and Calamoideae (rattan palms) both evolved cirrate leaves armed with hooks and grapnels for climbing. Some species of Calamoideae develop a different climbing organ known as the flagellum, which also bears hooks. The present study indicates that geometry and mechanical properties of the cirrus vary between species.

View Article and Find Full Text PDF

Mechanical properties are investigated in Desmoncus orthacanthos and D. polyacanthos from French Guiana, South America. Differences in size and axis stiffness are related to different trellis requirements and habitats.

View Article and Find Full Text PDF

A mathematical method, based on polar coordinates that allow modelling of primary and secondary growth processes in stems of extant and fossil plants, is summarized and its potential is discussed in comparison with numerical methods using digitizing tablets or electronic image analysing systems. As an example, the modelling of tissue distribution in the internode of an extant sphenopsid (Equisetum hyemale) is presented. In the second half of the paper we present new data of a functional analysis of stem structure and biomechanics of the early lignophyte Tetraxylopteris schmidtii (Middle Devonian) using the polar coordinate method for modelling the tissue distribution in stems of different ontogenetic age.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionuhimcfl2ug01rvs9chc2n3rmne99uom4): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once