In its forward direction, transhydrogenase couples the reduction of NADP(+) by NADH to the outward translocation of protons across the membrane of bacteria and animal mitochondria. The enzyme has three components: dI and dIII protrude from the membrane and dII spans the membrane. Hydride transfer takes place between nucleotides bound to dI and dIII.
View Article and Find Full Text PDFTranshydrogenase couples hydride transfer between NADH and NADP(+) to proton translocation across a membrane. The binding of Zn(2+) to the enzyme was shown previously to inhibit steps associated with proton transfer. Using Zn K-edge X-ray absorption fine structure (XAFS), we report here on the local structure of Zn(2+) bound to Escherichia coli transhydrogenase.
View Article and Find Full Text PDFBiochim Biophys Acta
October 2009
Transhydrogenase couples proton translocation across a bacterial or mitochondrial membrane to the redox reaction between NAD(H) and NADP(H). Purified intact transhydrogenase from Escherichia coli was prepared, and its His tag removed. The forward and reverse transhydrogenation reactions catalysed by the enzyme were inhibited by certain metal ions but a "cyclic reaction" was stimulated.
View Article and Find Full Text PDFNicotinamide dinucleotide binding to transhydrogenase purified from Escherichia coli was investigated by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. Detergent-free transhydrogenase was deposited as a thin film on an ATR prism, and spectra were recorded during perfusion with buffers in the presence and absence of dinucleotide (NADP(+), NADPH, NAD(+), or NADH) in both H(2)O and D(2)O media. IR spectral changes were attributable to the bound dinucleotides and to changes in the protein itself.
View Article and Find Full Text PDFTranshydrogenase couples the redox reaction between NAD(H) and NADP(H) to proton translocation across a membrane. In membrane vesicles from Escherichia coli and Rhodospirillum rubrum, the transhydrogenase reaction (measured in the direction driving inward proton translocation) was inhibited by Zn(2+) and Cd(2+). However, depending on pH, the metal ions either had no effect on, or stimulated, "cyclic" transhydrogenation.
View Article and Find Full Text PDFTranshydrogenase, found in bacterial membranes and inner mitochondrial membranes of animal cells, couples the redox reaction between NAD(H) and NADP(H) to proton translocation. In this work, the invariant Gln132 in the NAD(H)-binding component (dI) of the Rhodospirillum rubrum transhydrogenase was substituted with Asn (to give dI.Q132N).
View Article and Find Full Text PDF