Front Bioeng Biotechnol
August 2020
Production of biofuels, bioproducts, and bioenergy requires a well-characterized, stable, and reasonably uniform biomass supply and well-established supply chains for shipping biomass from farm fields to biorefineries, while achieving year-round production targets. Preserving and stabilizing biomass feedstock during storage is a necessity for cost-effective and sustainable biofuel production. Ensiling is a common storage method used to preserve and even improve forage quality; however, the impact of ensiling on biomass physical and chemical properties that influence bioconversion processes has been variable.
View Article and Find Full Text PDFBackground: For biofuel production processes to be economically efficient, it is essential to maximize the production of monomeric carbohydrates from the structural carbohydrates of feedstocks. One strategy for maximizing carbohydrate production is to identify less recalcitrant feedstock cultivars by performing some type of experimental screening on a large and diverse set of candidate materials, or by identifying genetic modifications (random or directed mutations or transgenic plants) that provide decreased recalcitrance. Economic efficiency can also be increased using additional pretreatment processes such as deacetylation, which uses dilute NaOH to remove the acetyl groups of hemicellulose prior to dilute acid pretreatment.
View Article and Find Full Text PDFBackground: Oleaginous microalgae contain a high level of lipids, which can be extracted and converted to biofuel. The lipid-extracted residue can then be further utilized through anaerobic digestion to produce biogas. However, long-chain fatty acids (LCFAs) have been identified as the main inhibitory factor on microbial activity of anaerobic consortium.
View Article and Find Full Text PDFIn this study, the reuse of nitrogen from fuel-extracted algal residues was investigated. The alga Scenedesmus acutus was found to be able to assimilate nitrogen contained in amino acids, yeast extracts, and proteinaceous alga residuals. Moreover, these alternative nitrogen resources could replace nitrate in culturing media.
View Article and Find Full Text PDFFlow injection electrospray (FIE) and LC-tandem mass spectrometry techniques were used to characterize corn stover acid hydrolysates before and after overliming and ammonia conditioning steps. Analyses were performed on samples without fractionation (dilution only) in an effort provide an inventory of ionizable substances. Statistical evaluation of the results indicates that the ammonia-treated and crude hydrolysates were more similar to one another than any other pairing, with conditioning leading to a decrease in malate levels.
View Article and Find Full Text PDFApproximately 9% of the 9.7 billion bushels of corn harvested in the United States was used for fuel ethanol production in 2002, half of which was prepared for fermentation by dry grinding. The University of Illinois has developed a modified dry grind process that allows recovery of the fiber fractions prior to fermentation.
View Article and Find Full Text PDF