Publications by authors named "Nick Mitchell"

Heterogeneous ice nucleation occurs vis-à-vis nucleating agents already present in solution yet can occur within a rather broad range of temperatures (0 to ca. -38 °C). Controlling this temperature and the subsequent growth of resulting ice crystals is crucial for the survival of biological organisms (certain insects, fish, and plants that endure subzero temperatures), as well as in the context of medical cryopreservation and food science.

View Article and Find Full Text PDF

Depression is a major public health problem, with a lifetime and 12-month prevalence estimated at 18 and 6% of adults. Depression is costly in terms of treatment and lost productivity and is the main burden of mental illness across the globe. Existing pharmacological and psychological treatments for depression result in clinically meaningful improvements in <60% of patients.

View Article and Find Full Text PDF

The voltage-driven passage of biological polymers through nanoscale pores is an analytically, technologically, and biologically relevant process. Despite various studies on homopolymer translocation there are still several open questions on the fundamental aspects of pore transport. One of the most important unresolved issues revolves around the passage of biopolymers which vary in charge and volume along their sequence.

View Article and Find Full Text PDF

A series of metal-chelating lipid conjugates has been designed and synthesized. Each member of the series bears a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) macrocycle attached to the lipid head group, using short n-ethylene glycol (n-EG) spacers of varying length. Liposomes incorporating these lipids, chelated to Gd(3+), (64)Cu(2+), or (111)In(3+), and also incorporating fluorescent lipids, have been prepared, and their application in optical, magnetic resonance (MR) and single-photon emission tomography (SPECT) imaging of cellular uptake and distribution investigated in vitro and in vivo.

View Article and Find Full Text PDF

Single-molecule characterization is essential for ascertaining the structural and functional properties of bottom-up DNA nanostructures. Here we enlist three atomic force microscopy (AFM) techniques to examine tetrahedron-shaped DNA nanostructures that are functionally enhanced with small chemical tags. In line with their application for biomolecule immobilization in biosensing and biophysics, the tetrahedra feature three disulfide-modified vertices to achieve directed attachment to gold surfaces.

View Article and Find Full Text PDF

Approximately 35 million people worldwide suffer from Alzheimer's disease (AD). Existing therapeutics, while moderately effective, are currently unable to stem the widespread rise in AD prevalence. AD is associated with an increase in amyloid beta (Aβ) oligomers and hyperphosphorylated tau, along with cognitive impairment and neurodegeneration.

View Article and Find Full Text PDF

A small preliminary study of 15 teachers who had participated in education research in England examined the effects of prior experience as research participants on why they participated and how they perceived the methodology and ethics of the research. Nine participants were research novices, while six were research experienced. The latter group were found to be more perceptive and critical of the ethics of the research and focused on the research purposes and adequacy of the methods.

View Article and Find Full Text PDF

The labeling of nucleotides and oligonucleotides with reporter groups is an important tool in the sequence-specific sensing of DNA, as exemplified by fluorescence tags. Here we show that chemical tags can encode sequence information for electrical nanopore recordings. In nanopore recordings, individual DNA strands are electrophoretically driven through a nanoscale pore leading to detectable blockades of ionic current.

View Article and Find Full Text PDF

We describe nanoscale protein pores modified with a single hyperbranched dendrimer molecule inside the channel lumen. Sulfhydryl-reactive polyamido amine (PAMAM) dendrimers of generations 2, 3 and 5 were synthesized, chemically characterized, and reacted with engineered cysteine residues in the transmembrane pore alpha-hemolysin. Successful coupling was monitored using an electrophoretic mobility shift assay.

View Article and Find Full Text PDF