J Air Waste Manag Assoc
June 2012
In this study, removing sulfur dioxide (SO2), nitrogen oxides (NO(x)), and mercury (Hg) from simulated flue gas was investigated in two laboratory-sized bubbling reactors that simulated an oxidizing reactor (where the NO and Hg(0) oxidation reactions are expected to occur) and a wet limestone scrubber, respectively. A sodium chlorite solution was used as the oxidizing agent. The sodium chlorite solution was an effective additive that enhanced the NO(x), Hg, and SO2 capture from the flue gas.
View Article and Find Full Text PDFThis paper presents a study on the simultaneous removal of SO2, NO(x) and Hg (both Hg0 and Hg2+) from a simulated flue gas by oxidant injection in a bench-simulated wet limestone scrubber for a wide range of slurry pH. The slurry pH strongly influenced the chemical mechanism in the scrubber and, therefore, affected pollutant removal. This paper also examines the potential ClO2(gas) reemission from a developed multipollutant scrubber at different slurry pHs.
View Article and Find Full Text PDFOne of the most important environmental protection problems for coal-fired power plants is prevention of atmospheric pollution of flying ash. The ash particles are typically removed from flue gases by means of electrostatic precipitators, for which the efficiency may be significantly increased by lowering the resistance of fly ash, which may be achieved by controlled addition of microamounts of sulfur trioxide (SO3) into the flue gases. This paper describes the novel technology for production of SO3 by sulfur dioxide (SO2) oxidation using the combined catalytic system consisting of conventional vanadium catalyst and novel platinum catalyst on the base of silicazirconia glass-fiber supports.
View Article and Find Full Text PDFEnviron Sci Technol
March 2007
Brominated powdered activated carbon sorbents have been shown to be quite effective for mercury capture when injected into the flue gas duct at coal-fired power plants and are especially useful when burning Western low-chlorine subbituminous coals. X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) have been used to determine information about the speciation and binding of mercury on two commercially available brominated activated carbons. The results are compared with similar analysis of a conventional (non-halogenated) and chlorinated activated carbon.
View Article and Find Full Text PDF