Introduction: The therapeutic landscape for chronic lymphocytic leukemia (CLL) has significantly shifted with the approval of novel agents. Understanding current prognostic testing and treatment practices in this new era is critical. Beginning enrollment in 2015, informCLL is the first United States-based real-world, prospective, observational registry that initiated enrollment after approval of novel agents.
View Article and Find Full Text PDFChagas' heart disease (CHD), caused by the parasite Trypanosoma cruzi, is the most common form of myocarditis in Central America and South America. Some humans and experimental animals develop both humoral and cell-mediated cardiac-specific autoimmunity during infection. Benznidazole, a trypanocidal drug, is effective at reducing parasite load and decreasing the severity of myocarditis in acutely infected patients.
View Article and Find Full Text PDFArsenic trioxide (As(2)O(3)) exhibits important antitumor activities in vitro and in vivo, but the precise mechanisms by which it induces its effects are not known. We provide evidence that during treatment of BCR-ABL-expressing cells with As(2)O(3), there is activation of a cellular pathway involving the p70 S6 kinase (p70S6K). Our data show that p70S6K is rapidly phosphorylated on Thr(421) and Ser(424) and is activated in an As(2)O(3)-inducible manner.
View Article and Find Full Text PDFArsenic trioxide (As(2)O(3)) induces differentiation and apoptosis of leukemic cells in vitro and in vivo, but the precise mechanisms that mediate such effects are not known. In the present study, we provide evidence that the kinases MAPK kinase 3 (Mkk3) and Mkk6 are activated during treatment of leukemic cell lines with As(2)O(3) to regulate downstream engagement of the p38 mitogen-activated protein kinase. Using cells with targeted disruption of both the Mkk3 and Mkk6 genes, we show that As(2)O(3)-dependent activation of p38 is defective in the absence of Mkk3 and Mkk6, establishing that these kinases are essential for As(2)O(3)-dependent engagement of the p38 pathway.
View Article and Find Full Text PDFAll-trans-retinoic acid (RA) is a potent inhibitor of leukemia cell proliferation and induces differentiation of acute promyelocytic leukemia cells in vitro and in vivo. For RA to induce its biological effects in target cells, binding to specific retinoic acid nuclear receptors is required. The resulting complexes bind to RA-responsive elements (RAREs) in the promoters of RA-inducible genes to initiate gene transcription and to generate protein products that mediate the biological effects of RA.
View Article and Find Full Text PDF