Forensic services worldwide often encounter considerable challenges relating to funding and infrastructure. Smaller jurisdictions or areas where forensic resources are scarce are faced with complicated choices in how they approach criminal casework, with a number of options available. Often these involve trade-offs between cost, time and data quality.
View Article and Find Full Text PDFEnvironmental DNA (eDNA) is widely used in biodiversity, conservation, and ecological studies but despite its successes, similar approaches have not yet been regularly applied to assist in wildlife crime investigations. The purpose of this paper is to review current eDNA methods and assess their potential forensic application in freshwater environments considering collection, transport and persistence, analysis, and interpretation, while identifying additional research required to present eDNA evidence in court. An extensive review of the literature suggests that commonly used collection methods can be easily adapted for forensic frameworks providing they address the appropriate investigative questions and take into consideration the uniqueness of the target species, its habitat, and the requirements of the end user.
View Article and Find Full Text PDFSexual assault casework requires the collaboration of multiple agency staff to formalise an investigative pipeline running from crime scene to court. While the same could be said of many other forensic investigations, few require the additional support of health care staff and the combined forensic involvement of body-fluid examiners, DNA experts and analytical chemists. The sheer amount of collaborative effort between agencies is laid out through a detailed examination of the investigative workflow from crime scene to courtroom with each step in the pipelines detailed and discussed.
View Article and Find Full Text PDFThe Quantiplex® Pro RGQ kit quantifies DNA in a sample, supports the detection of mixtures and assesses the extent of DNA degradation based on relative ratios of amplified autosomal and male markers. Data show no significant difference in the accuracy and sensitivity of quantification between this and the Promega PowerQuant® System, both detecting the lowest amount of DNA tested, 4 pg. Laboratory controlled mixed male:female DNA samples together with mock sexual assault samples were quantified across a range of mixture ratios.
View Article and Find Full Text PDFThe Illegal Wildlife Trade (IWT) represents a multi-billion dollar black-market industry whereby wild species are illegally taken from their natural environment and sold. A common question asked by wildlife forensic scientists pertains to species and/or genus identity, which currently requires multi-step processing. Our work details the development of three HyBeacon® probes, used for the presumptive detection of rhinoceros, pangolin and key target species in the Panthera genus.
View Article and Find Full Text PDFThe increasing use of non-laboratory-based DNA and protein detection methods promise to provide rapid investigative intelligence and support sample prioritisation. Primarily developed for human forensic or medical applications, current systems may also show utility in the field of wildlife forensic science. However, it is currently unknown whether the requirements of the wildlife forensic community can be met by current non-laboratory based tools.
View Article and Find Full Text PDFForensic Sci Int Genet
November 2018
The advent of DNA technologies for field-based application promises to provide rapid intelligence to aid investigations. Their validation and adoption by enforcement groups have demonstrated utility in sample screening and prioritisation, but field application in some areas of forensic science, such as human remains identification, is little evidenced. Assessing the ability of such approaches to provide meaningful data is critical as decomposition is likely to complicate analysis and limit the effective use of such field-based DNA interventions.
View Article and Find Full Text PDFField based forensic tests commonly provide information on the presence and identity of biological stains and can also support the identification of species. Such information can support downstream processing of forensic samples and generate rapid intelligence. These approaches have traditionally used chemical and immunological techniques to elicit the result but some are known to suffer from a lack of specificity and sensitivity.
View Article and Find Full Text PDFHyBeacons are linear oligonucleotides which incorporate fluorescent dyes covalently linked to internal nucleotides. They have previously been used with PCR and isothermal amplification to interrogate SNPs and STRs in fields as diverse as clinical diagnostics, food authentication, and forensic DNA profiling. This work explores their use for the identification of expressed gene sequences through mRNA profiling.
View Article and Find Full Text PDFIdentifying individual species or determining species' composition in an unknown sample is important for a variety of forensic applications. Food authentication, monitoring illegal trade in endangered species, forensic entomology, sexual assault case work and counter terrorism are just some of the fields that can require the detection of the biological species present. Traditional laboratory based approaches employ a wide variety of tools and technologies and exploit a number of different species specific traits including morphology, molecular differences and immuno-chemical analyses.
View Article and Find Full Text PDFDNA profiling through the analysis of STRs remains one of the most widely used tools in human identification across the world. Current laboratory STR analysis is slow, costly and requires expert users and interpretation which can lead to instances of delayed investigations or non-testing of evidence on budget grounds. The ParaDNA(®) Intelligence System has been designed to provide a simple, fast and robust way to profile DNA samples in a lab or field-deployable manner.
View Article and Find Full Text PDFThe rise of DNA evidence to the forefront of forensic science has led to high sample numbers being submitted for profiling by investigators to casework laboratories: bottleneck effects are often seen resulting in slow turnaround times and sample backlog. The ParaDNA(®) Screening and Intelligence Tests have been designed to guide investigators on the viability of potential sources of DNA allowing them to determine which samples should be sent for full DNA analysis. Both tests are designed to augment the arsenal of available forensic tests for end users and be used concurrently to those commonly available.
View Article and Find Full Text PDFSeminal fluid represents a common biological material recovered from sexual assault crime scenes. Such samples can be prescreened using different techniques to determine cell type and relative amount before submitting for full STR profiling. The ParaDNA(®) Screening System is a novel forensic test which identifies the presence of DNA through amplification and detection of two common STR loci (D16S539 and TH01) and the Amelogenin marker.
View Article and Find Full Text PDFThe creation of new technologies and their application to forensic science is key to the field's development. Rapid DNA profiling is one such area of research which has grown in response to a desire from enforcement authorities for in-house forensic DNA processing and rapid access to forensic genetic intelligence. However, introducing novel technologies into the forensics market must be carefully monitored and controlled as the success or failure of any technology ultimately has long standing implications for victims, suspects, and also to Police and forensic practitioners.
View Article and Find Full Text PDFCurrent assessment of whether a forensic evidence item should be submitted for STR profiling is largely based on the personal experience of the Crime Scene Investigator (CSI) and the submissions policy of the law enforcement authority involved. While there are chemical tests that can infer the presence of DNA through the detection of biological stains, the process remains mostly subjective and leads to many samples being submitted that give no profile or not being submitted although DNA is present. The ParaDNA(®) Screening System was developed to address this issue.
View Article and Find Full Text PDFTwenty-eight STR loci were screened in wild populations of six bird of prey species providing allele frequencies and population genetic parameters necessary for the application of STRs in wildlife forensic genetic casework. Individual STR loci were validated according to forensic recommendations in specimens of golden eagle (Aquila chrysaetos), goshawk (Accipiter gentilis), merlin (Falco columbarius), peregrine falcon (Falco peregrinus), gyr falcon (Falco rusticolus) and saker falcon (Falco cherrug). Deviations from Hardy-Weinberg expectations and linkage disequilibrium between locus pairs were examined.
View Article and Find Full Text PDFDeveloping short tandem repeat (STR) profiling systems for forensic identification is complicated in animal species. Obtaining a representative number of individuals from populations, limited access to family groups and a lack of developed STR markers can make adhering to human forensic guidelines difficult. Furthermore, a lack of animal specific guidelines may explain why many wildlife forensic STR profiling systems developed to date have not appropriately addressed areas such as marker validation or the publication and analysis of population data necessary for the application of these tools to forensic science.
View Article and Find Full Text PDFAnimals often differ in suites of correlated behaviours, comparable with how humans differ in personality. Constraints on the architecture of behaviour have been invoked to explain why such 'behavioural syndromes' exist. From an adaptationist viewpoint, however, behavioural syndromes should evolve only in those populations where natural selection has favoured such trait covariance, and they should therefore exist only in particular types of population.
View Article and Find Full Text PDFThe application of forensics to wildlife crime investigation routinely involves genetic species identification based on DNA sequence similarity. This work can be hindered by a lack of authenticated reference DNA sequence data resulting in weak matches between evidence and reference samples. The introduction of DNA barcoding has highlighted the expanding use of the mtDNA gene, cytochrome c oxidase I (COI), as a genetic marker for species identification.
View Article and Find Full Text PDF