Publications by authors named "Nichole R Bouffard"

Associative memory deficits in aging are frequently characterized by false recognition of novel stimulus associations, particularly when stimuli are similar. Introducing distinctive stimuli, therefore, can help guide item differentiation in memory and can further our understanding of how age-related brain changes impact behavior. How older adults use different types of distinctive information to distinguish overlapping events in memory and to avoid false associative recognition is still unknown.

View Article and Find Full Text PDF

Transcranial magnetic stimulation (TMS) delivered to the angular gyrus (AG) affects hippocampal function and associated behaviors (Thakral PP, Madore KP, Kalinowski SE, Schacter DL. Modulation of hippocampal brain networks produces changes in episodic simulation and divergent thinking. 2020a.

View Article and Find Full Text PDF

During navigation, information at multiple scales needs to be integrated. Single-unit recordings in rodents suggest that gradients of temporal dynamics in the hippocampus and entorhinal cortex support this integration. In humans, gradients of representation are observed, such that granularity of information represented increases along the long axis of the hippocampus.

View Article and Find Full Text PDF

The hippocampus, well known for its role in episodic memory, might also be an important brain region for extracting structure from our experiences in order to guide future decisions. Recent evidence in rodents suggests that the hippocampus supports decision making by representing task structure in cooperation with the orbitofrontal cortex (OFC). Here, we examine how the human hippocampus and OFC represent task structure during an associative learning task that required learning of both context-determined and context-invariant probabilistic associations.

View Article and Find Full Text PDF

Episodic memory is known to rely on the hippocampus, but how the hippocampus organizes different episodes to permit their subsequent retrieval remains controversial. One major area of debate hinges on a discrepancy between two hypothesized roles of the hippocampus: differentiating between similar events to reduce interference and assigning similar representations to events that share overlapping items and contextual information. Here, we used multivariate analyses of activity patterns measured with fMRI to characterize how the hippocampus distinguishes between memories based on similarity at the level of items and/or context.

View Article and Find Full Text PDF