Publications by authors named "Nichole A Broderick"

Article Synopsis
  • * When mosquitoes consumed dietary L-DOPA, it enhanced their immune response, increased pigmentation, and shortened their lifespan due to changes in melanin synthesis.
  • * The study highlights L-DOPA's potential as a natural method for mosquito control in malaria transmission, indicating a need for further research in real-world settings.
View Article and Find Full Text PDF

As a fundamental biological process, DNA replication ensures the accurate copying of genetic information. However, the impact of this process on cellular plasticity in multicellular organisms remains elusive. Here, we find that reducing the level or activity of a replication component, DNA Polymerase α (Polα), facilitates cell reprogramming in diverse stem cell systems across species.

View Article and Find Full Text PDF

exhibits toxicity to , providing a new infection model to study host homeostasis. Previous studies using pathogen models have proven to be a useful tool to understand host physiology. Here, we report on the whole-genome sequences of these microbes obtained from short and long reads.

View Article and Find Full Text PDF

Microbial invasions underlie host-microbe interactions resulting in pathogenesis and probiotic colonization. In this study, we explore the effects of the microbiome on microbial invasion in Drosophila melanogaster. We demonstrate that gut microbes Lactiplantibacillus plantarum and Acetobacter tropicalis improve survival and lead to a reduction in microbial burden during infection.

View Article and Find Full Text PDF

Unlabelled: The practice of designating two or more authors as equal contributors (ECs) on a scientific publication is increasingly common as a form of sharing credit. However, EC authors are often unclearly attributed on curriculum vitae (CVs) or citation engines, and it is unclear how research teams determine author order within an EC listing. In response to studies showing that male authors were more likely to be placed first in an EC listing, the American Society for Microbiology (ASM) required that authors explain the reasons for author order beginning in 2020.

View Article and Find Full Text PDF

The practice of designating two or more authors as equal contributors (EC) on a scientific publication is increasingly common as a form of sharing credit. However, EC authors are often unclearly attributed on CVs or citation engines, and it is unclear how research teams determine author order within an EC listing. In response to studies showing that male authors were more likely to be placed first in an EC listing, the American Society of Microbiology (ASM) required that authors explain the reasons for author order beginning in 2020.

View Article and Find Full Text PDF

is recognized for its ability to colonize diverse habitats and cause disease in a variety of hosts, including plants, invertebrates, and mammals. Understanding how this bacterium is able to occupy wide-ranging niches is important for deciphering its ecology. We used transposon sequencing [Tn-Seq, also known as insertion sequencing (INSeq)] to identify genes in that contribute to fitness during the colonization of .

View Article and Find Full Text PDF

Host-microbe interactions constitute dynamical systems that can be represented by mathematical formulations that determine their dynamic nature and are categorized as deterministic, stochastic, or chaotic. Knowing the type of dynamical interaction is essential for understanding the system under study. Very little experimental work has been done to determine the dynamical characteristics of host-microbe interactions, and its study poses significant challenges.

View Article and Find Full Text PDF

is recognized for its ability to colonize diverse habitats and cause disease in a variety of hosts, including plants, invertebrates, and mammals. Understanding how this bacterium is able to occupy wide-ranging niches is important for deciphering its ecology. We used transposon sequencing (Tn-Seq, also known as INSeq) to identify genes in that contribute to fitness during colonization of .

View Article and Find Full Text PDF

and are bacterial symbionts commonly isolated from decaying fruits and from the microbiome of . Studies have shown that these organisms interact synergistically, imparting beneficial effects on the host. Here, we report whole-genome sequences of these microbes obtained from long and short reads.

View Article and Find Full Text PDF

Insecticides have made great strides in reducing the global burden of vector-borne disease. Nonetheless, serious public health concerns remain because insecticide-resistant vector populations continue to spread globally. To circumvent insecticide resistance, it is essential to understand all contributing mechanisms.

View Article and Find Full Text PDF

Elucidating the role of one of the proteins produced by reveals a new molecule that allows this gut bacterium to support the development of fruit fly larvae.

View Article and Find Full Text PDF

Insecticides have made great strides in reducing the global burden of vector-borne disease. Nonetheless, serious public health concerns remain because insecticide-resistant vector populations continue to spread globally. To circumvent insecticide resistance, it is essential to understand all contributing mechanisms.

View Article and Find Full Text PDF

Microbial invasions underlie host-microbe interactions that result in microbial pathogenesis and probiotic colonization. While these processes are of broad interest, there are still gaps in our understanding of the barriers to entry and how some microbes overcome them. In this study, we explore the effects of the microbiome on invasions of foreign microbes in .

View Article and Find Full Text PDF

Host-microbe interactions constitute dynamical systems that can be represented by mathematical formulations that determine their dynamic nature, and are categorized as deterministic, stochastic, or chaotic. Knowing the type of dynamical interaction is essential for understanding the system under study. Very little experimental work has been done to determine the dynamical characteristics of host-microbe interactions and its study poses significant challenges.

View Article and Find Full Text PDF

Most insects exhibit high reproductive capacity, which demands large amounts of energy, including macronutrients and micronutrients. Interestingly, many proteins involved in oogenesis depend on metals ions, in particular iron (Fe), zinc (Zn), and copper (Cu). Mechanisms by which metal ions influence reproduction have been described in Drosophila melanogaster, but remain poorly understood in hematophagous insects where blood meals include significant ingestion of metal ions.

View Article and Find Full Text PDF

A fundamental and highly contested issue in microbiome research is whether internal organs such as the liver, brain, placenta, pancreas, and others are sterile and privileged or harbor a detectable and functional microbial biomass. In this issue of the JCI, Leinwand, Paul, et al. addressed this question using an array of diverse techniques and reported that normal healthy liver possesses a microbiome that is selectively recruited from the gut.

View Article and Find Full Text PDF

Melanin, a black-brown pigment found throughout all kingdoms of life, has diverse biological functions including UV protection, thermoregulation, oxidant scavenging, arthropod immunity, and microbial virulence. Given melanin's broad roles in the biosphere, particularly in insect immune defenses, it is important to understand how exposure to ubiquitous environmental contaminants affects melanization. Glyphosate-the most widely used herbicide globally-inhibits melanin production, which could have wide-ranging implications in the health of many organisms, including insects.

View Article and Find Full Text PDF

The world faces two seemingly unrelated challenges-a shortfall in the STEM workforce and increasing antibiotic resistance among bacterial pathogens. We address these two challenges with Tiny Earth, an undergraduate research course that excites students about science and creates a pipeline for antibiotic discovery.

View Article and Find Full Text PDF

gut microbes play important roles in host nutritional physiology. However, these associations are often indirect, and studies typically are in the context of specialized nutritional conditions, making it difficult to discern how microbiome-mediated impacts translate to physiologically relevant conditions, in the laboratory or nature. In this study, we quantified changes in dietary nutrients due to gut bacteria on three artificial diets and a natural diet of grapes.

View Article and Find Full Text PDF

Enterobacteria, including , bloom to high levels in the gut during inflammation and strongly contribute to the pathology of inflammatory bowel diseases. To survive in the inflamed gut, must tolerate high levels of antimicrobial compounds produced by the immune system, including toxic metals like copper and reactive chlorine oxidants such as hypochlorous acid (HOCl). Here, we show that extracellular copper is a potent detoxifier of HOCl and that the widely conserved bacterial HOCl resistance enzyme RclA, which catalyzes the reduction of copper(II) to copper(I), specifically protects against damage caused by the combination of HOCl and intracellular copper.

View Article and Find Full Text PDF

Antibiotics produced by bacteria play important roles in microbial interactions and competition Antibiosis can induce resistance mechanisms in target organisms, and at sublethal doses, antibiotics have been shown to globally alter gene expression patterns. Here, we show that hygromycin A from sp. strain 2AW.

View Article and Find Full Text PDF

Nutrition is a major factor influencing many aspects of physiology. However, a wide range of diets, many of which are termed "standard" in the literature, are utilized for research, leading to inconsistencies in reporting of nutrition-dependent phenotypes across the field. This is especially evident in microbiome studies, as diet has a pivotal role in microbiome composition and resulting host-microbe interactions.

View Article and Find Full Text PDF

Drosophila melanogaster harbors a simple gut microbial community, or microbiome, that regulates several facets of its physiology. As a result, the host employs multiple mechanisms of maintaining control over its microbiome in an effort to promote overall organismal homeostasis. Perturbations to the balance between microbiome and host can result in states of instability or disease, making maintenance of microbial homeostasis a fundamental physiologic aspect of D.

View Article and Find Full Text PDF