Oxygen (O)-delivering tissue substitutes have shown tremendous potential for enhancing tissue regeneration, maturation, and healing. As O is both a metabolite and powerful signaling molecule, providing controlled delivery is crucial for optimizing its beneficial effects in the treatment of critical-sized injuries. Here, we report the design and fabrication of 3D-printed, biodegradable, O-generating bone scaffold comprising calcium peroxide (CPO) that once hydrolytically activated, provides long-term generation of oxygen at a controlled, concentration-dependent manner, and polycaprolactone (PCL), a hydrophobic polymer that regulate the interaction of CPO with water, preventing burst release of O at early time points.
View Article and Find Full Text PDFPorous tissue-engineered 3D-printed scaffolds are a compelling alternative to autografts for the treatment of large periorbital bone defects. Matching the defect-specific geometry has long been considered an optimal strategy to restore pre-injury anatomy. However, studies in large animal models have revealed that biomaterial-induced bone formation largely occurs around the scaffold periphery.
View Article and Find Full Text PDFLow oxygen (O) diffusion into large tissue engineered scaffolds hinders the therapeutic efficacy of transplanted cells. To overcome this, we previously studied hollow, hyperbarically-loaded microtanks (μtanks) to serve as O reservoirs. To adapt these for bone regeneration, we fabricated biodegradable μtanks from polyvinyl alcohol and poly (lactic-co-glycolic acid) and embedded them to form 3D-printed, porous poly-ε-caprolactone (PCL)-μtank scaffolds.
View Article and Find Full Text PDFEngineered skeletal muscle grafts may be employed in various applications including the treatment of volumetric muscle loss (VML) and pharmacological drug screening. To recapitulate the well-defined structure of native muscle, tensile strains have been applied to the grafts. In this study, we cultured C2C12 murine myoblasts on electrospun fibrin microfiber bundles for 7 days in custom-built bioreactor units and investigated the impact of strain regimen and delayed onset of tensile straining on myogenic outcomes.
View Article and Find Full Text PDF