Metal nanocavities can generate plasmon-enhanced light upconversion signals under ultrashort pulse excitations through anti-Stokes photoluminescence (ASPL) or nonlinear harmonic generation processes, offering various applications in bioimaging, sensing, interfacial science, nanothermometry, and integrated photonics. However, achieving broadband multiresonant enhancement of both ASPL and harmonic generation processes within the same metal nanocavities remains challenging, impeding applications based on dual-modal or wavelength-multiplexed operations. Here, we report a combined experimental and theoretical study on dual-modal plasmon-enhanced light upconversion through both ASPL and second-harmonic generation (SHG) from broadband multiresonant metal nanocavities in two-tier Ag/SiO/Ag nanolaminate plasmonic crystals (NLPCs) that can support multiple hybridized plasmons with high spatial mode overlaps.
View Article and Find Full Text PDF