Publications by authors named "Nicholas W Jenkins"

Imaging using coherent extreme-ultraviolet (EUV) light provides exceptional capabilities for the characterization of the composition and geometry of nanostructures by probing with high spatial resolution and elemental specificity. We present a multi-modal tabletop EUV imaging reflectometer for high-fidelity metrology of nanostructures. The reflectometer is capable of measurements in three distinct modes: intensity reflectometry, scatterometry, and imaging reflectometry, where each mode addresses different nanostructure characterization challenges.

View Article and Find Full Text PDF

We demonstrate temporally multiplexed multibeam ptychography implemented for the first time in the EUV, by using a high harmonic based light source. This allows for simultaneous imaging of different sample areas, or of the same area at different times or incidence angles. Furthermore, we show that this technique is compatible with wavelength multiplexing for multibeam spectroscopic imaging, taking full advantage of the temporal and spectral characteristics of high harmonic light sources.

View Article and Find Full Text PDF

Recent advances in structured illumination are enabling a wide range of applications from imaging to metrology, which can benefit from advanced beam characterization techniques. Solving uniquely for the spatial distribution of polarization in a beam typically involves the use of two or more polarization optics, such as a polarizer and a waveplate, which is prohibitive for some wavelengths outside of the visible spectrum. We demonstrate a technique that circumvents the use of a waveplate by exploiting extended Gerchberg-Saxton phase retrieval to extract the phase.

View Article and Find Full Text PDF

Defect inspection on lithographic substrates, masks, reticles, and wafers is an important quality assurance process in semiconductor manufacturing. Coherent Fourier scatterometry (CFS) using laser beams with a Gaussian spatial profile is the standard workhorse routinely used as an in-line inspection tool to achieve high throughput. As the semiconductor industry advances toward shrinking critical dimensions in high volume manufacturing using extreme ultraviolet lithography, new techniques that enable high-sensitivity, high-throughput, and in-line inspection are critically needed.

View Article and Find Full Text PDF

Next-generation nano- and quantum devices have increasingly complex 3D structure. As the dimensions of these devices shrink to the nanoscale, their performance is often governed by interface quality or precise chemical or dopant composition. Here, we present the first phase-sensitive extreme ultraviolet imaging reflectometer.

View Article and Find Full Text PDF

We theoretically study particle-substrate interactions under laser irradiation. Van der Waals, electrostatic double layer and a laser induced dipole in the nanoparticle and an image dipole in the substrate were considered to be the major components of the total interaction potential. It was shown that laser-induced attractive potential energy between the particle and substrate reduces the potential barrier which increases the probability for metal nanoparticles to be deposited onto the substrate.

View Article and Find Full Text PDF