Intracellular tumor antigens presented on the cell surface in the context of human leukocyte antigen (HLA) molecules have been targeted by T cell-based therapies, but there has been little progress in developing small-molecule drugs or antibodies directed to these antigens. Here we describe a bispecific T-cell engager (BiTE) antibody derived from a T-cell receptor (TCR)-mimic monoclonal antibody (mAb) ESK1, which binds a peptide derived from the intracellular oncoprotein WT1 presented on HLA-A*02:01. Despite the very low density of the complexes at the cell surface, ESK1-BiTE selectively activated and induced proliferation of cytolytic human T cells that killed cells from multiple leukemias and solid tumors in vitro and in mice.
View Article and Find Full Text PDFPurpose: RMFPNAPYL (RMF), a Wilms' tumor gene 1 (WT1)-derived CD8 T-cell epitope presented by HLA-A*02:01, is a validated target for T-cell-based immunotherapy. We previously reported ESK1, a high avidity (Kd < 0.2 nmol/L), fully-human monoclonal antibody (mAb) specific for the WT1 RMF peptide/HLA-A*02:01 complex, which selectively bound and killed WT1(+) and HLA-A*02:01(+) leukemia and solid tumor cell lines.
View Article and Find Full Text PDFExpert Opin Biol Ther
November 2013
Therapeutic monoclonal antibodies (mAbs) are a proven therapeutic platform, but they cannot readily cross the cell membranes to bind intracellular antigens, while some of the most important disease-associated proteins are intracellular, protected from direct mAb attack. However, the cellular processes of necrosis and major histocompatibility complex (MHC) class I antigen presentation expose epitopes from intracellular proteins to the extracellular environment or cell surface. Antibodies that exploit these processes can therefore specifically target diseased cells based on their intracellular protein content.
View Article and Find Full Text PDFMonoclonal antibodies (mAbs) have naturally evolved as suitable, high affinity and specificity targeting molecules. However, the large size of full-length mAbs yields poor pharmacokinetic properties. A solution to this issue is the use of a multistep administration approach, in which the slower clearing mAb is administered first and allowed to reach the target site selectively, followed by administration of a rapidly clearing small molecule carrier of the cytotoxic or imaging ligand, which bears a cognate receptor for the mAb.
View Article and Find Full Text PDFThe Wilms tumor 1 (WT1) oncoprotein is an intracellular, oncogenic transcription factor that is overexpressed in a wide range of leukemias and solid cancers. RMFPNAPYL (RMF), a WT1-derived CD8+ T cell human leukocyte antigen (HLA)-A0201 epitope, is a validated target for T cell-based immunotherapy. Using phage display technology, we discovered a fully human "T cell receptor-like" monoclonal antibody (mAb), ESK1, specific for the WT1 RMF peptide/HLA-A0201 complex.
View Article and Find Full Text PDFAssay Drug Dev Technol
June 2012
Ionizing radiation (IR) and certain chemotherapeutic drugs are designed to generate cytotoxic DNA double-strand breaks (DSBs) in cancer cells. Inhibition of the major DSB repair pathway, nonhomologous end joining (NHEJ), will enhance the cytotoxicity of these agents. Screening for inhibitors of the DNA ligase IV (Lig4), which mediates the final ligation step in NHEJ, offers a novel target-based drug discovery opportunity.
View Article and Find Full Text PDF