The structure of coral-reef fish assemblages is affected by natural and anthropogenic factors such as the architectural complexity, benthic composition and physical characteristics of the habitat, fishing pressure and land-based input. The coral-reef ecosystem of South Kona, Hawai'i hosts diverse reef habitats with a relatively high live coral cover, but a limited number of studies have focused on the ecosystem or the fish assemblages. Here, we surveyed fish assemblages at 119 sites in South Kona in 2020 and 2021 and investigated the associations between the fish assemblages and environmental variables obtained from published Geographic Information System (GIS) layers, including depth, latitude, reef rugosity, housing density and benthic cover.
View Article and Find Full Text PDFTranslocation, often a management solution reserved for at-risk species, is a highly time-sensitive intervention in the face of a rapidly changing climate. The definition of abiotic and biotic habitat requirements is essential to the selection of appropriate release sites in novel environments. However, field-based approaches to gathering this information are often too time intensive, especially in areas of complex topography where common, coarse-scale climate models lack essential details.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2022
Corals are a major habitat-building life-form on tropical reefs that support a quarter of all species in the ocean and provide ecosystem services to millions of people. Marine heat waves continue to threaten and shape reef ecosystems by killing individual coral colonies and reducing their diversity. However, marine heat waves are spatially and temporally heterogeneous, and so too are the environmental and biological factors mediating coral resilience during and following thermal events.
View Article and Find Full Text PDFNative forests of Hawai'i Island are experiencing an ecological crisis in the form of Rapid 'Ōhi'a Death (ROD), a recently characterized disease caused by two fungal pathogens in the genus Ceratocystis. Since approximately 2010, this disease has caused extensive mortality of Hawai'i's keystone endemic tree, known as 'ōhi'a (Metrosideros polymorpha). Visible symptoms of ROD include rapid browning of canopy leaves, followed by death of the tree within weeks.
View Article and Find Full Text PDFThe past 40 years in Southeast Asia have seen about 50% of lowland rainforests converted to oil palm and other plantations, and much of the remaining forest heavily logged. Little is known about how fragmentation influences recovery and whether climate change will hamper restoration. Here, we use repeat airborne LiDAR surveys spanning the hot and dry 2015-16 El Niño Southern Oscillation event to measure canopy height growth across 3,300 ha of regenerating tropical forests spanning a logging intensity gradient in Malaysian Borneo.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2020
Coral is the life-form that underpins the habitat of most tropical reef ecosystems, thereby supporting biological diversity throughout the marine realm. Coral reefs are undergoing rapid change from ocean warming and nearshore human activities, compromising a myriad of services provided to societies including coastal protection, fishing, and cultural practices. In the face of these challenges, large-scale operational mapping of live coral cover within and across reef ecosystems could provide more opportunities to address reef protection, resilience, and restoration at broad management- and policy-relevant scales.
View Article and Find Full Text PDFSevere drought has the potential to cause selective mortality within a forest, thereby inducing shifts in forest species composition. The southern Sierra Nevada foothills and mountains of California have experienced extensive forest dieback due to drought stress and insect outbreak. We used high-fidelity imaging spectroscopy (HiFIS) and light detection and ranging (LiDAR) from the Carnegie Airborne Observatory (CAO) to estimate the effect of forest dieback on species composition in response to drought stress in Sequoia National Park.
View Article and Find Full Text PDFLeaf economics spectrum (LES) theory suggests a universal trade-off between resource acquisition and storage strategies in plants, expressed in relationships between foliar nitrogen (N) and phosphorus (P), leaf mass per area (LMA), and photosynthesis. However, how environmental conditions mediate LES trait interrelationships, particularly at large biospheric scales, remains unknown because of a lack of spatially explicit data, which ultimately limits our understanding of ecosystem processes, such as primary productivity and biogeochemical cycles. We used airborne imaging spectroscopy and geospatial modeling to generate, to our knowledge, the first biospheric maps of LES traits, here centered on 76 million ha of Andean and Amazonian forest, to assess climatic and geophysical determinants of LES traits and their interrelationships.
View Article and Find Full Text PDFAverage responses of forest foliar traits to elevation are well understood, but far less is known about trait distributional responses to elevation at multiple ecological scales. This limits our understanding of the ecological scales at which trait variation occurs in response to environmental drivers and change. We analyzed and compared multiple canopy foliar trait distributions using field sampling and airborne imaging spectroscopy along an Andes-to-Amazon elevation gradient.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2016
The 2012-2015 drought has left California with severely reduced snowpack, soil moisture, ground water, and reservoir stocks, but the impact of this estimated millennial-scale event on forest health is unknown. We used airborne laser-guided spectroscopy and satellite-based models to assess losses in canopy water content of California's forests between 2011 and 2015. Approximately 10.
View Article and Find Full Text PDFFactors controlling savanna woody vegetation structure vary at multiple spatial and temporal scales, and as a consequence, unraveling their combined effects has proven to be a classic challenge in savanna ecology. We used airborne LiDAR (light detection and ranging) to map three-dimensional woody vegetation structure throughout four savanna watersheds, each contrasting in geologic substrate and climate, in Kruger National Park, South Africa. By comparison of the four watersheds, we found that geologic substrate had a stronger effect than climate in determining watershed-scale differences in vegetation structural properties, including cover, height and crown density.
View Article and Find Full Text PDFTryptophan was substituted for residues in all four transmembrane domains of connexin32. Function was assayed using dual cell two-electrode voltage clamp after expression in Xenopus oocytes. Tryptophan substitution was poorly tolerated in all domains, with the greatest impact in TM1 and TM4.
View Article and Find Full Text PDFFragmentation poses one of the greatest threats to tropical forests with short-term changes to the structure of forest canopies affecting microclimate, tree mortality, and growth. Yet the long-term effects of fragmentation are poorly understood because (1) most effects require many decades to materialize, but long-term studies are very rare, (2) the effects of edges on forest canopy structure as a function of fragment size are unknown, and (3) edge effects are often confounded by fragment shape. We quantified the long-term (centennial) effects of fragmentation on forest canopy structure using airborne light detection and ranging (LiDAR) of 1060 Hawaiian rain forest fragments ranging in size from 0.
View Article and Find Full Text PDFObjective: To evaluate the potential benefit of performing off-clamp robot-assisted partial nephrectomy as it relates to renal functional outcomes, while assessing the safety profile of this unconventional surgical approach.
Methods: Twenty-nine patients who underwent off-clamp robot-assisted partial nephrectomy for suspected renal cell carcinoma at Washington University between March 2008 and September 2011 (group 1) were matched to 29 patients with identical nephrometry scores and comparable baseline renal function who underwent robot-assisted partial nephrectomy with hilar clamping during the same period (group 2). The matched cohorts' perioperative and renal functional outcomes were compared at a mean 9-month follow-up.
Background And Purpose: Because of the impact warm ischemia time may have on renal function, various surgical techniques have been proposed to minimize or eliminate warm ischemia. The purpose of this study is to evaluate our initial renal functional outcomes of off-clamp robot-assisted partial nephrectomy (RAPN), while assessing the safety profile of this unconventional surgical approach.
Patients And Methods: We performed a retrospective review of our off-clamp RAPN experience between August 2007 and January 2012.