Publications by authors named "Nicholas Tribble"

Article Synopsis
  • DNA profiling using STR analysis is essential for human identification, but traditional methods are often slow and costly, leading to challenges in investigations.
  • The ParaDNA(®) Intelligence System offers a faster, user-friendly solution for DNA profiling, requiring minimal training and able to analyze samples directly in about 75 minutes.
  • Developed following established guidelines, the system has proven effective across various biological samples, indicating its potential utility in forensic, military, and disaster victim identification applications.
View Article and Find Full Text PDF

The rise of DNA evidence to the forefront of forensic science has led to high sample numbers being submitted for profiling by investigators to casework laboratories: bottleneck effects are often seen resulting in slow turnaround times and sample backlog. The ParaDNA(®) Screening and Intelligence Tests have been designed to guide investigators on the viability of potential sources of DNA allowing them to determine which samples should be sent for full DNA analysis. Both tests are designed to augment the arsenal of available forensic tests for end users and be used concurrently to those commonly available.

View Article and Find Full Text PDF

Seminal fluid represents a common biological material recovered from sexual assault crime scenes. Such samples can be prescreened using different techniques to determine cell type and relative amount before submitting for full STR profiling. The ParaDNA(®) Screening System is a novel forensic test which identifies the presence of DNA through amplification and detection of two common STR loci (D16S539 and TH01) and the Amelogenin marker.

View Article and Find Full Text PDF

Objective: To demonstrate the importance of using a combined genetic and functional approach to correctly interpret a genetic test for monogenic diabetes.

Research Design And Methods: We identified three probands with a phenotype consistent with maturity-onset diabetes of the young (MODY) subtype GCK-MODY, in whom two potential pathogenic mutations were identified: [R43H/G68D], [E248 K/I225M], or [G261R/D217N]. Allele-specific PCR and cosegregation were used to determine phase.

View Article and Find Full Text PDF

Heterozygous glucokinase (GCK) mutations cause a subtype of maturity-onset diabetes of the young (GCK-MODY). Over 600 GCK mutations have been reported of which ∼65% are missense. In many cases co-segregation has not been established and despite the importance of functional studies in ascribing pathogenicity for missense variants these have only been performed for <10% of mutations.

View Article and Find Full Text PDF

Posttranslational activation of glucokinase (GCK) through S-nitrosylation has been recently observed in the insulin-secreting pancreatic beta-cell; however, the function of this molecular mechanism in regulating the physiology of insulin secretion is not well understood. To more fully understand the function of posttranslational regulation of GCK, we examined two naturally occurring GCK mutations that map to residues proximal to the S-nitrosylated cysteine and cause mild fasting hyperglycemia (maturity-onset diabetes of the young; subtype glucokinase). The kinetics of recombinantly generated GCK-R369P and GCK-V367M were assessed in vitro.

View Article and Find Full Text PDF

Genome-wide association studies have identified a number of signals for both Type 2 Diabetes and related quantitative traits. For the majority of loci, the transition from association signal to mutational mechanism has been difficult to establish. Glucokinase (GCK) regulates glucose storage and disposal in the liver where its activity is regulated by glucokinase regulatory protein (GKRP; gene name GCKR).

View Article and Find Full Text PDF

Objective: To evaluate the clinical response to sulphonylurea treatment in a child with a homozygous T168A GCK (glucokinase) mutation, causing permanent neonatal diabetes mellitus (PNDM).

Study Design: Oral glibenclamide was given for 3 months. Pancreatic beta cell function was assessed by a glucagon stimulation test.

View Article and Find Full Text PDF

There are well-documented examples in the literature of where determining the genetic aetiology of a disorder has provided insights into important regulatory pathways and protein interactions, and, more recently, has led to improved treatment options for patients. The studies of monogenic forms of beta-cell dysfunction are no exception. Naturally occurring mutations in the gene for the beta-cell enzyme glucokinase (GCK) result in both hyper- and hypo-glycaemia.

View Article and Find Full Text PDF

Objective: Activating glucokinase (GCK) mutations are a rarely reported cause of congenital hyperinsulinism (CHI), but the prevalence of GCK mutations is not known.

Methods: From a pooled cohort of 201 non-syndromic children with CHI from three European referral centres (Denmark, n=141; Norway, n=26; UK, n=34), 108 children had no K(ATP)-channel (ABCC8/KCNJ11) gene abnormalities and were screened for GCK mutations. Novel GCK mutations were kinetically characterised.

View Article and Find Full Text PDF

Overexpression of P-glycoproteins (Pgps) is assumed to be a principal mechanism of resistance of nematodes and arthropods to macrocyclic lactones. Quantitative RT-PCR (Q-RT-PCR) was used to demonstrate changes in transcription levels of two putative P-glycoprotein genes, designated here as SL0525 and SL-Pgp1, in sea lice (Lepeophtheirus salmonis) following exposure to emamectin benzoate (EMB). Pre-adult L.

View Article and Find Full Text PDF