Water strongly influences the physical properties of the mantle and enhances its ability to melt or convect. Its presence can also be used to trace recycling of surface reservoirs down to the deep mantle, which makes knowledge of the water content in the Earth's interior and its evolution crucial for understanding global geodynamics. Komatiites (MgO-rich ultramafic magmas) result from a high degree of mantle melting at high pressures and thus are excellent probes of the chemical composition and water contents of the deep mantle.
View Article and Find Full Text PDFArchaean komatiites (ultramafic lavas) result from melting under extreme conditions of the Earth's mantle. Their chemical compositions evoke very high eruption temperatures, up to 1,600 degrees Celsius, which suggests even higher temperatures in their mantle source. This message is clouded, however, by uncertainty about the water content in komatiite magmas.
View Article and Find Full Text PDFCretaceous represents one of the hottest greenhouse periods in the Earth's history, but some recent studies suggest that small ice caps might be present in non-polar regions during certain periods in the Early Cretaceous. Here we report extremely negative δ(18)O values of -18.12‰ to -13.
View Article and Find Full Text PDFThe Precambrian history of our planet is marked by two major events: a pulse of continental crust formation at the end of the Archaean eon and a weak oxygenation of the atmosphere (the Great Oxidation Event) that followed, at 2.45 billion years ago. This oxygenation has been linked to the emergence of oxygenic cyanobacteria and to changes in the compositions of volcanic gases, but not to the composition of erupting lavas--geochemical constraints indicate that the oxidation state of basalts and their mantle sources has remained constant since 3.
View Article and Find Full Text PDFIt has been suggested that a decrease in atmospheric methane levels triggered the progressive rise of atmospheric oxygen, the so-called Great Oxidation Event, about 2.4 Gyr ago. Oxidative weathering of terrestrial sulphides, increased oceanic sulphate, and the ecological success of sulphate-reducing microorganisms over methanogens has been proposed as a possible cause for the methane collapse, but this explanation is difficult to reconcile with the rock record.
View Article and Find Full Text PDFPlate tectonic processes introduce basaltic crust (as eclogite) into the peridotitic mantle. The proportions of these two sources in mantle melts are poorly understood. Silica-rich melts formed from eclogite react with peridotite, converting it to olivine-free pyroxenite.
View Article and Find Full Text PDFUnderstanding of the geochemistry of the chalcophile elements [i.e., Os, Ir, Ru, Pt, Pd (platinum-group elements), and Au, Cu, Ni] has been informed for at least 20 years by the common assumption that when crust-forming partial melts are extracted from the upper mantle, sulfide liquid in the restite sequesters chalcophile elements until the extent of partial melting exceeds approximately 25% and all of the sulfide has been dissolved in silicate melt [Hamlyn, P.
View Article and Find Full Text PDF