Genetically modified (GM) crops that have been engineered to express transgenes have been in commercial use since 1995 and are annually grown on 200 million hectares globally. These crops have provided documented benefits to food security, rural economies, and the environment, with no substantiated case of food, feed, or environmental harm attributable to cultivation or consumption. Despite this extensive history of advantages and safety, the level of regulatory scrutiny has continually increased, placing undue burdens on regulators, developers, and society, while reinforcing consumer distrust of the technology.
View Article and Find Full Text PDFPLoS One
July 2023
The genetically modified cotton DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 expressing Cry1Ac, Cry1F and Vip3Aa19 from Bacillus thuringiensis Berliner (Bt) has been cultivated in Brazil since the 2020/2021 season. Here, we assessed the performance of DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 cotton expressing Cry1Ac, Cry1F and Vip3Aa19 against Helicoverpa armigera (Hübner), Helicoverpa zea (Boddie), and their hybrid progeny. We also carried out evaluations with DAS-21023-5 × DAS-24236-5 cotton containing Cry1Ac and Cry1F.
View Article and Find Full Text PDFDespite over 25 years of safe deployment of genetically engineered crops, the number, complexity, and scope of regulatory studies required for global approvals continue to increase devoid of adequate scientific justification. Recently, there have been calls to further expand the scope of study and data requirements to improve public acceptance. However, increased regulation can actually generate consumer distrust due to the misperception that risks are high.
View Article and Find Full Text PDFInsecticide resistance is a long-standing problem affecting the efficacy and utility of crop protection compounds. Insecticide resistance also impacts the ability and willingness of companies around the world to invest in new crop protection compounds and traits. The Insecticide Resistance Action Committee (IRAC) was formed in 1984 to provide a coordinated response by the crop protection industry to the problem of insecticide resistance.
View Article and Find Full Text PDFA recent perspective defends the approach of the European Food Safety Authority (EFSA) for evaluating the compositional normality of genetically engineered (GE) crops using a concurrently grown subset of non-GE varieties within the risk assessment. While the approach of the EFSA manages the risk of falsely claiming equivalence, this is achieved at the expense of low power to detect true equivalence. This generates inconsistent findings and safety conclusions across studies for the same GE event based on the selected non-GE comparators.
View Article and Find Full Text PDFThe fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), is currently the most important maize pest in Mexico.
View Article and Find Full Text PDFTrends Biotechnol
December 2019
Risk-disproportionate regulation of gene-edited crops has been proposed to gain public acceptance for this breeding technique. However, confounding safety regulations with advocacy for an underlying technology risks weakening achievement of both objectives. Dedicated factual communication and education from trusted sources is likely to better support public acceptance of gene-edited crops.
View Article and Find Full Text PDFCooperative management of pest susceptibility to transgenic Bacillus thuringiensis (Bt) crops is pursued worldwide in a variety of forms and to varying degrees of success depending on context. We examine this context using a comparative socioecological analysis of resistance management in Australia, Brazil, India, and the United States. We find that a shared understanding of resistance risks among government regulators, growers, and other actors is critical for effective governance.
View Article and Find Full Text PDFThe risks of not considering benefits in risk assessment are often overlooked. Risks are also often evaluated without consideration of the broader context. We discuss these two concepts in relation to genetically engineered (GE) crops.
View Article and Find Full Text PDFField-scale studies that examine the potential for adverse effects of Bt crop technology on non-target arthropods may supplement data from laboratory studies to support an environmental risk assessment. A three year field study was conducted in Brazil to evaluate potential for adverse effects of cultivating soybean event DAS-81419-2 that produces the Cry1Ac and Cry1F proteins. To do so, we examined the diversity and abundance of non-target arthropods (NTAs) in Bt soybean in comparison with its non-Bt near isoline, with and without conventional insecticide applications, in three Brazilian soybean producing regions.
View Article and Find Full Text PDFBackground: Transgenic maize (Zea mays L.) event TC1507 (Herculex I insect protection), expressing Cry1F δ-endotoxin derived from Bacillus thuringiensis var. aizawai, was commercialized in 2003 in the Americas.
View Article and Find Full Text PDFBackground: Cases of western corn rootworm (WCR) field-evolved resistance to Cry3Bb1 and other corn rootworm (CRW) control traits have been reported. Pyramid products expressing multiple CRW traits can delay resistance compared to single trait products. We used field studies to assess the pyramid CRW corn products, SmartStax (expressing Cry3Bb1 and Cry34Ab1/Cry35Ab1) and SmartStax PRO (expressing Cry3Bb1, Cry34Ab1/Cry35Ab1 and DvSnf7), at locations with high WCR densities and possible Cry3Bb1 resistance, and to assess the reduction in adult emergence attributable to DvSnf7 and other traits.
View Article and Find Full Text PDFParental RNAi (pRNAi) is an RNA interference response where the gene knockdown phenotype is observed in the progeny of the treated organism. pRNAi has been demonstrated in female western corn rootworms (WCR) via diet applications and has been described as a potential approach for rootworm pest management. However, it is not clear if plant-expressed pRNAi can provide effective control of next generation WCR larvae in the field.
View Article and Find Full Text PDFThe western corn rootworm (WCR), Diabrotica virgifera virgifera, is the most important pest of corn in the US Corn Belt. Economic estimates indicate that costs of control and yield loss associated with WCR damage exceed $US 1 billion annually. Historically, corn rootworm management has been extremely difficult because of its ability to evolve resistance to both chemical insecticides and cultural control practices.
View Article and Find Full Text PDFRNA interference (RNAi) is a gene silencing mechanism that is present in animals and plants and is triggered by double stranded RNA (dsRNA) or small interfering RNA (siRNA), depending on the organism. In the western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), RNAi can be achieved by feeding rootworms dsRNA added to artificial diet or plant tissues transformed to express dsRNA. The effect of RNAi depends on the targeted gene function and can range from an absence of phenotypic response to readily apparent responses, including lethality.
View Article and Find Full Text PDFMost regulatory authorities require that developers of genetically engineered insect-resistant (GEIR) crops evaluate the potential for these crops to have adverse impacts on valued non-target organisms (NTOs), i.e., organisms not intended to be controlled by the trait.
View Article and Find Full Text PDFBackground: Transgenic corn hybrids that express toxins from Bacillus thuringiensis (Bt) have suppressed European corn borer populations and reduced the pest status of this insect throughout much of the US corn belt. A major assumption of the high-dose/refuge strategy proposed for insect resistance management and Bt corn is that the frequency of resistance alleles is low so that resistant pests surviving exposure to Bt corn will be rare.
Results: The frequency of resistance to the Cry1F Bt toxin was estimated using two different screening tools and compared with annual susceptibility monitoring based on diagnostic bioassays and LC50 and EC50 determinations.
The western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae) is a significant corn pest throughout the United States corn belt. Rootworm larvae feed on corn roots causing yield losses and control expenditures that are estimated to exceed US$1 billion annually. Traditional management practices to control rootworms such as chemical insecticides or crop rotation have suffered reduced effectiveness due to the development of physiological and behavioral resistance.
View Article and Find Full Text PDFSince initial launch of insect protected transgenic crops, the most effective strategy to manage the potential for target pests to evolve resistance has been the use of a single mode of action with "high dose" and structured refuge. However, the effectiveness of this strategy is limited if mortality of certain pests does not reach "high dose" criteria, inconsistent implementation of refuges and non-rare resistance alleles. More recently, several pyramided trait products, which include multiple modes of action against key target pests, have been developed.
View Article and Find Full Text PDFIn 2006, reports of potential Spodoptera frugiperda resistance to TC1507 maize in Puerto Rico were received. Subsequent investigation confirmed that pest populations collected from several sites in Puerto Rico were largely unaffected by the Cry1F protein in bioassays, with resistance ratios likely in excess of 1000. Since then, we have continued monitoring populations in Puerto Rico and in southern areas of the mainland US.
View Article and Find Full Text PDFOne source of potential harm from the cultivation of transgenic crops is their dispersal, persistence and spread in non-agricultural land. Ecological damage may result from such spread if the abundance of valued species is reduced. The ability of a plant to spread in non-agricultural habitats is called its invasiveness potential.
View Article and Find Full Text PDFTransgenic maize, Zea mays L., event TC1507 produces the Cry1F protein to provide protection from feeding by several important lepidopteran pests, including Spodoptera frugiperda (J.E.
View Article and Find Full Text PDFSubstantial equivalence has become established as a foundation concept in the safety evaluation of transgenic crops. In the case of a food and feed crop, no single variety is considered the standard for safety or nutrition, so the substantial equivalence of transgenic crops is investigated relative to the array of commercial crop varieties with a history of safe consumption. Although used extensively in clinical medicine to compare new generic drugs with brand-name drugs, equivalence limits are shown to be a poor model for comparing transgenic crops with an array of reference crop varieties.
View Article and Find Full Text PDFField studies were conducted over a 3-yr period to investigate the potential effects of cultivating transgenic maize hybrids containing a Cry1F insect-resistant protein on nontarget arthropod abundance. The narrow spectrum of activity of Cry1F against a subset of lepidopteran pest species would not suggest broad-spectrum effects on nontarget arthropods. However, because of the insecticidal nature of Bt proteins, an alternate hypothesis is that some nontargets may be affected by exposure to the protein.
View Article and Find Full Text PDF