Space radiation is a notable hazard for long-duration human spaceflight. Associated risks include cancer, cataracts, degenerative diseases and tissue reactions from large, acute exposures. Space radiation originates from diverse sources, including galactic cosmic rays, trapped-particle (Van Allen) belts and solar-particle events.
View Article and Find Full Text PDFLife Sci Space Res (Amst)
November 2023
Monitoring space radiation is of vital importance for risk reduction strategies in human space exploration. Radiation protection programs on Earth and in space rely on personal and area radiation monitoring instruments. Crew worn radiation detectors are crucial for successful crew radiation protection programs since they measure what each crewmember experiences in different shielding configurations within the space habitable volume.
View Article and Find Full Text PDFLife Sci Space Res (Amst)
November 2023
The Hybrid Electronic Radiation Assessor (HERA) system is a Timepix-based ionizing radiation detector built for NASA Exploration-class crewed missions. The HERA performs data analysis on-system and generates telemetry messages for ingestion, display, and relay by the spacecraft. Several iterations of the hardware have been flown aboard the International Space Station as payloads to test system operation and gain experience with the hardware in the space radiation environment.
View Article and Find Full Text PDFLife Sci Space Res (Amst)
August 2017
The Mars Science Laboratory Radiation Assessment Detector (MSLRAD) is providing continuous measurements of dose, dose equivalent, and particle flux on the surface of Mars. These measurements have been highly useful in validating environmental and radiation transport models that will be heavily relied upon for future deep space missions. In this work, the HZETRN code is utilized to estimate radiation quantities of interest on the Martian surface.
View Article and Find Full Text PDFThe radiation environment at the Martian surface is, apart from occasional solar energetic particle events, dominated by galactic cosmic radiation, secondary particles produced in their interaction with the Martian atmosphere and albedo particles from the Martian regolith. The highly energetic primary cosmic radiation consists mainly of fully ionized nuclei creating a complex radiation field at the Martian surface. This complex field, its formation and its potential health risk posed to astronauts on future manned missions to Mars can only be fully understood using a combination of measurements and model calculations.
View Article and Find Full Text PDFLife Sci Space Res (Amst)
February 2017
Although charged particles in space have been detected with radiation detectors on board spacecraft since the discovery of the Van Allen Belts, reports on the effects of direct exposure to space radiation in biological systems have been limited. Measurement of biological effects of space radiation is challenging due to the low dose and low dose rate nature of the radiation environment, and due to the difficulty in distinguishing the radiation effects from microgravity and other space environmental factors. In astronauts, only a few changes, such as increased chromosome aberrations in their lymphocytes and early onset of cataracts, are attributed primarily to their exposure to space radiation.
View Article and Find Full Text PDFProgress in the development of high-performance semiconductor radiation imaging pixel detectors based on technologies developed for use in high-energy physics applications has enabled the development of a completely new generation of compact low-power active dosimeters and area monitors for use in space radiation environments. Such detectors can provide real-time information concerning radiation exposure, along with detailed analysis of the individual particles incident on the active medium. Recent results from the deployment of detectors based on the Timepix from the CERN-based Medipix2 Collaboration on the International Space Station (ISS) are reviewed, along with a glimpse of developments to come.
View Article and Find Full Text PDF