Background: Myeloid cells are critical determinants of the sustained inflammation in Crohn's Disease (CD). Targeting such cells may be an effective therapeutic approach for refractory CD patients. Bromodomain and extra-terminal domain protein inhibitors (iBET) are potent anti-inflammatory agents; however, they also possess wide-ranging toxicities.
View Article and Find Full Text PDFIgG antibodies form immune complexes (IC) that propagate inflammation and tissue damage in autoimmune diseases such as systemic lupus erythematosus. IgG IC engage Fcγ receptors (FcγR) on mononuclear phagocytes (MNP), leading to widespread changes in gene expression that mediate antibody effector function. Bromodomain and extra-terminal domain (BET) proteins are involved in governing gene transcription.
View Article and Find Full Text PDFThrough regulation of the epigenome, the bromodomain and extra terminal (BET) family of proteins represent important therapeutic targets for the treatment of human disease. Through mimicking the endogenous -acetyl-lysine group and disrupting the protein-protein interaction between histone tails and the bromodomain, several small molecule pan-BET inhibitors have progressed to oncology clinical trials. This work describes the medicinal chemistry strategy and execution to deliver an orally bioavailable tetrahydroquinoline (THQ) pan-BET candidate.
View Article and Find Full Text PDFThe functions of the bromodomain and extra terminal (BET) family of proteins have been implicated in a wide range of diseases, particularly in the oncology and immuno-inflammatory areas, and several inhibitors are under investigation in the clinic. To mitigate the risk of attrition of these compounds due to structurally related toxicity findings, additional molecules from distinct chemical series were required. Here we describe the structure- and property-based optimization of the tool molecule I-BET151 toward I-BET282E, a molecule with properties suitable for progression into clinical studies.
View Article and Find Full Text PDFOsteoclast (OC) development in response to nuclear factor kappa-Β ligand (RANKL) is critical for bone homeostasis in health and in disease. The early and direct chromatin regulatory changes imparted by the BET chromatin readers Brd2-4 and OC-affiliated transcription factors (TFs) during osteoclastogenesis are not known. Here, we demonstrate that in response to RANKL, early OC development entails regulation of two alternative cell fate transcriptional programmes, OC macrophage, with repression of the latter following activation of the former.
View Article and Find Full Text PDFCyclin-dependent kinase 9 and bromodomain and extraterminal inhibitors are synergistic in MLL-rearranged leukemia. Multiple AML driver genes are downregulated by the combined therapy suggesting broad applicability for this subtype.
View Article and Find Full Text PDFChanges in the epigenetic landscape of immune cells are a crucial component of gene activation during the induction of inflammatory responses, therefore it has been hypothesized that epigenetic modulation could be employed to restore homeostasis in inflammatory scenarios. Fungal pathogens cause a large burden of morbidity and even mortality due to the hyperinflammatory processes that induce mucosal, allergic or systemic infections. Bromodomain and extraterminal domain (BET) proteins are considered as one as the most tantalizing pharmacological targets for the modulation of inflammatory responses at the epigenetic level.
View Article and Find Full Text PDFPulmonary hypertension is a co-morbidity, which strongly participates in morbi-mortality in patients with chronic obstructive pulmonary disease (COPD). Recent findings showed that bromodomain-containing proteins, in charge of reading histone acetylation, could be involved in pulmonary arterial hypertension. Our aim was to study the effect of I-BET151, an inhibitor of bromodomain and extra-terminal domain (BET), on the right ventricle hypertrophy and pulmonary hypertension, induced by a combination of chronic hypoxia and pulmonary inflammation, as the two main stimuli encountered in COPD.
View Article and Find Full Text PDF-rearranged acute lymphoblastic leukemia (ALL) occurring in infants is a rare but very aggressive leukemia, typically associated with a dismal prognosis. Despite the development of specific therapeutic protocols, infant patients with -rearranged ALL still suffer from a low cure rate. At present, novel therapeutic approaches are urgently needed.
View Article and Find Full Text PDFSome of the Chronic Obstructive Pulmonary Disease (COPD) patients engaged in exercise-based muscle rehabilitation programs are unresponsive. To unravel the respective role of chronic hypoxia and pulmonary inflammation on soleus muscle hypertrophic capacities, we challenged male Wistar rats to repeated lipopolysaccharide instillations, associated or not with a chronic hypoxia exposure. Muscle hypertrophy was initiated by bilateral ablation of soleus agonists 1 week before sacrifice.
View Article and Find Full Text PDFObjectives: To evaluate the therapeutic potential of I-BET-762, an inhibitor of the bromodomain and extra-terminal (BET) protein family, in experimental acute pancreatitis (AP).
Methods: AP was induced by retrograde infusion of taurolithocholic acid sulphate into the biliopancreatic duct (TLCS-AP) or 2 intraperitoneal (i.p.
Toll-like receptors (TLRs) play an important role in immune responses to pathogens by transducing signals in innate immune cells in response to microbial products. TLRs are also expressed on B cells, and TLR signaling in B cells contributes to antibody-mediated immunity and autoimmunity. The SYK tyrosine kinase is essential for signaling from the B cell antigen receptor (BCR), and thus for antibody responses.
View Article and Find Full Text PDFStudies investigating the causes of autism spectrum disorder (ASD) point to genetic, as well as epigenetic, mechanisms of the disease. Identification of epigenetic processes that contribute to ASD development and progression is of major importance and may lead to the development of novel therapeutic strategies. Here, we identify the bromodomain and extraterminal domain-containing proteins (BETs) as epigenetic regulators of genes involved in ASD-like behaviors in mice.
View Article and Find Full Text PDFHistone acetylation marks have an important role in controlling gene expression and are removed by histone deacetylases (HDACs). These marks are read by bromodomain and extra-terminal (BET) proteins and novel inhibitiors of these proteins are currently in clinical development. Inhibitors of HDAC and BET proteins have individually been shown to cause apoptosis and reduce growth of melanoma cells.
View Article and Find Full Text PDFSignals from the BCR are required for Ag-specific B cell recruitment into the immune response. Binding of Ag to the BCR induces phosphorylation of immune receptor tyrosine-based activation motifs in the cytoplasmic domains of the CD79a and CD79b signaling subunits, which subsequently bind and activate the Syk protein tyrosine kinase. Earlier work with the DT40 chicken B cell leukemia cell line showed that Syk was required to transduce BCR signals to proximal activation events, suggesting that Syk also plays an important role in the activation and differentiation of primary B cells during an immune response.
View Article and Find Full Text PDFEmerging evidence suggests that RANKL-induced changes in chromatin state are important for osteoclastogenesis, but these epigenetic mechanisms are not well understood and have not been therapeutically targeted. In this study, we find that the small molecule I-BET151 that targets bromo and extra-terminal (BET) proteins that 'read' chromatin states by binding to acetylated histones strongly suppresses osteoclastogenesis. I-BET151 suppresses pathologic bone loss in TNF-induced inflammatory osteolysis, inflammatory arthritis and post-ovariectomy models.
View Article and Find Full Text PDFEpigenetic changes are widespread in melanoma and contribute to the pathogenic biology of this disease. In the present study, we show that I-BET151, which belongs to a new class of drugs that target the BET family of epigenetic "reader" proteins, inhibits melanoma growth in vivo and induced variable degrees of apoptosis in a panel of melanoma cells. Apoptosis was caspase dependent and associated with G1 cell cycle arrest.
View Article and Find Full Text PDFThe bromodomain and extraterminal (BET) protein BRD2-4 inhibitors hold therapeutic promise in preclinical models of hematologic malignancies. However, translation of these data to molecules suitable for clinical development has yet to be accomplished. Herein we expand the mechanistic understanding of BET inhibitors in multiple myeloma by using the chemical probe molecule I-BET151.
View Article and Find Full Text PDFRecent studies suggest that BET inhibitors are effective anti-cancer therapeutics. Here we show that BET inhibitors are effective against murine primary mammary tumors, but not pulmonary metastases. BRD4, a target of BET inhibitors, encodes two isoforms with opposite effects on tumor progression.
View Article and Find Full Text PDFThe bromo and extra C-terminal domain (BET) family of bromodomains are involved in binding epigenetic marks on histone proteins, more specifically acetylated lysine residues. This paper describes the discovery and structure-activity relationships (SAR) of potent benzodiazepine inhibitors that disrupt the function of the BET family of bromodomains (BRD2, BRD3, and BRD4). This work has yielded a potent, selective compound I-BET762 that is now under evaluation in a phase I/II clinical trial for nuclear protein in testis (NUT) midline carcinoma and other cancers.
View Article and Find Full Text PDFFollicular B cell survival requires signaling from BAFFR, a receptor for BAFF and the B cell antigen receptor (BCR). This "tonic" BCR survival signal is distinct from that induced by antigen binding and may be ligand-independent. We show that inducible inactivation of the Syk tyrosine kinase, a key signal transducer from the BCR following antigen binding, resulted in the death of most follicular B cells because Syk-deficient cells were unable to survive in response to BAFF.
View Article and Find Full Text PDFBromodomain-containing proteins bind acetylated lysine residues on histone tails and are involved in the recruitment of additional factors that mediate histone modifications and enable transcription. A compound, I-BET-762, that inhibits binding of an acetylated histone peptide to proteins of the bromodomain and extra-terminal domain (BET) family, was previously shown to suppress the production of proinflammatory proteins by macrophages and block acute inflammation in mice. Here, we investigated the effect of short-term treatment with I-BET-762 on T-cell function.
View Article and Find Full Text PDFThe C-type lectin receptor CLEC-2 signals through a pathway that is critically dependent on the tyrosine kinase Syk. We show that homozygous loss of either protein results in defects in brain vascular and lymphatic development, lung inflation, and perinatal lethality. Furthermore, we find that conditional deletion of Syk in the hematopoietic lineage, or conditional deletion of CLEC-2 or Syk in the megakaryocyte/platelet lineage, also causes defects in brain vascular and lymphatic development, although the mice are viable.
View Article and Find Full Text PDF