Publications by authors named "Nicholas Seaton"

WS is a promising transition-metal dichalcogenide (TMDC) for use as a channel material in extreme-scaled metal-oxide-semiconductor field-effect transistors (MOSFETs) due to its monolayer thickness, high carrier mobility, and its potential for symmetric n-type and p-type MOSFET performance. However, the formation of stable, low-barrier-height contacts to monolayer TMDCs continues to be a challenge. This study introduces an innovative approach to realize high-performance WS MOSFETs by utilizing bilayer WS (2L-WS) in the contact region grown through a two-step chemical vapor deposition process.

View Article and Find Full Text PDF

Black arsenic phosphorus single crystals were grown using a short-way transport technique resulting in crystals up to 12 × 110μmand ranging from 200 nm to 2μmthick. The reaction conditions require tin, tin (IV) iodide, gray arsenic, and red phosphorus placed in an evacuated quartz ampule and ramped up to a maximum temperature of 630 °C. The crystal structure and elemental composition were characterized using Raman spectroscopy, x-ray diffraction, and x-ray photoelectron spectroscopy, cross-sectional transmission microscopy, and electron backscatter diffraction.

View Article and Find Full Text PDF

A single-step, direct silicon-substrate growth of black phosphorus (BP) crystals is achieved in a self-contained short-way transport technique under low-pressure conditions (<1.5 MPa). A 115 nm-thick BP hero single crystal is formed with lateral dimensions of 10 × 85 μm.

View Article and Find Full Text PDF