Publications by authors named "Nicholas Schaub"

A growing community is constructing a next-generation file format (NGFF) for bioimaging to overcome problems of scalability and heterogeneity. Organized by the Open Microscopy Environment (OME), individuals and institutes across diverse modalities facing these problems have designed a format specification process (OME-NGFF) to address these needs. This paper brings together a wide range of those community members to describe the cloud-optimized format itself-OME-Zarr-along with tools and data resources available today to increase FAIR access and remove barriers in the scientific process.

View Article and Find Full Text PDF

SEQUIN is a web-based application (app) that allows fast and intuitive analysis of RNA sequencing data derived for model organisms, tissues, and single cells. Integrated app functions enable uploading datasets, quality control, gene set enrichment, data visualization, and differential gene expression analysis. We also developed the iPSC Profiler, a practical gene module scoring tool that helps measure and compare pluripotent and differentiated cell types.

View Article and Find Full Text PDF

A growing community is constructing a next-generation file format (NGFF) for bioimaging to overcome problems of scalability and heterogeneity. Organized by the Open Microscopy Environment (OME), individuals and institutes across diverse modalities facing these problems have designed a format specification process (OME-NGFF) to address these needs. This paper brings together a wide range of those community members to describe the cloud-optimized format itself -- OME-Zarr -- along with tools and data resources available today to increase FAIR access and remove barriers in the scientific process.

View Article and Find Full Text PDF

The properties and structure of the cellular microenvironment can influence cell behavior. Sites of cell adhesion to the extracellular matrix (ECM) initiate intracellular signaling that directs cell functions such as proliferation, differentiation, and apoptosis. Electrospun fibers mimic the fibrous nature of native ECM proteins and cell culture in fibers affects cell shape and dimensionality, which can drive specific functions, such as the osteogenic differentiation of primary human bone marrow stromal cells (hBMSCs), by.

View Article and Find Full Text PDF

Cell viability, an essential measurement for cell therapy products, lacks traceability. One of the most common cell viability tests is trypan blue dye exclusion where blue-stained cells are counted via brightfield imaging. Typically, live and dead cells are classified based on their pixel intensities which may vary arbitrarily making it difficult to compare results.

View Article and Find Full Text PDF

This paper addresses the problem of designing trojan detectors in neural networks (NNs) using interactive simulations. Trojans in NNs are defined as triggers in inputs that cause misclassification of such inputs into a class (or classes) unintended by the design of a NN-based model. The goal of our work is to understand encodings of a variety of trojan types in fully connected layers of neural networks.

View Article and Find Full Text PDF

The desmoplastic stroma of pancreatic cancers forms a physical barrier that impedes intratumoral drug delivery. Attempts to modulate the desmoplastic stroma to increase delivery of administered chemotherapy have not shown positive clinical results thus far, and preclinical reports in which chemotherapeutic drugs were coadministered with antistromal therapies did not universally demonstrate increased genotoxicity despite increased intratumoral drug levels. In this study, we tested whether TGFβ antagonism can break the stromal barrier, enhance perfusion and tumoral drug delivery, and interrogated cellular and molecular mechanisms by which the tumor prevents synergism with coadministered gemcitabine.

View Article and Find Full Text PDF

Predicting Retinal Pigment Epithelium (RPE) cell functions in stem cell implants using non-invasive bright field microscopy imaging is a critical task for clinical deployment of stem cell therapies. Such cell function predictions can be carried out using Artificial Intelligence (AI) based models. In this paper we used Traditional Machine Learning (TML) and Deep Learning (DL) based AI models for cell function prediction tasks.

View Article and Find Full Text PDF

Electrospun fibers are a commonly used cell scaffold and have also been used as pharmaceutical delivery devices. In this study, we developed a method to analyze the release of multiple pharmaceuticals from a single electrospun fiber scaffold and determine how each pharmaceutical's loading concentration affects the release rate of each pharmaceutical. Our analysis methods were tested on electrospun fibers loaded with two pharmaceuticals: 6-aminonicotinamide (6AN) and ibuprofen.

View Article and Find Full Text PDF

Higher order tasks in development for brain-computer interfacing applications require the invasiveness of intracortical microelectrodes. Unfortunately, the resulting inflammatory response contributes to the decline of detectable neural signal. The major components of the neuroinflammatory response to microelectrodes have been well-documented with histological imaging, leading to the identification of broad pathways of interest for its inhibition such as oxidative stress and innate immunity.

View Article and Find Full Text PDF

Increases in the number of cell therapies in the preclinical and clinical phases have prompted the need for reliable and noninvasive assays to validate transplant function in clinical biomanufacturing. We developed a robust characterization methodology composed of quantitative bright-field absorbance microscopy (QBAM) and deep neural networks (DNNs) to noninvasively predict tissue function and cellular donor identity. The methodology was validated using clinical-grade induced pluripotent stem cell-derived retinal pigment epithelial cells (iPSC-RPE).

View Article and Find Full Text PDF

A promising component of biomaterial constructs for neural tissue engineering are electrospun fibers, which differentiate stem cells and neurons as well as direct neurite growth. However, means of protecting neurons, glia, and stem cells seeded on electrospun fibers between lab and surgical suite have yet to be developed. Here we report an effort to accomplish this using cell-encapsulating hydrogel fibers made by interfacial polyelectrolyte complexation (IPC).

View Article and Find Full Text PDF

A major challenge in developing drug-releasing electrospun nanofibers is obtaining long-term drug release over many weeks with no burst release of drug. Here, we present new methods capable of prolonging the diffusive release of small molecule drugs from electrospun poly-L-lactic acid (PLLA) nanofibers. The methods focus on removal of retained electrospinning solvent through fiber heating, maintaining fibers in a laboratory setting, or a combination of these methods.

View Article and Find Full Text PDF

Background: Cell-scaffold contact measurements are derived from pairs of co-registered volumetric fluorescent confocal laser scanning microscopy (CLSM) images (z-stacks) of stained cells and three types of scaffolds (i.e., spun coat, large microfiber, and medium microfiber).

View Article and Find Full Text PDF

Currently, it is unknown how the mechanical properties of electrospun fibers, and the presentation of surface nanotopography influence macrophage gene expression and protein production. By further elucidating how specific fiber properties (mechanical properties or surface properties) alter macrophage behavior, it may be possible to create electrospun fiber scaffolds capable of initiating unique cellular and tissue responses. In this study, we determined the elastic modulus and rigidity of fibers with varying topographies created by finely controlling humidity and including a non-solvent during electrospinning.

View Article and Find Full Text PDF

Secreted frizzled related protein 2 (SFRP2) is a tumor endothelial marker expressed in angiosarcoma. Previously, we showed ultrasound molecular imaging with SFRP2-targeted contrast increased average video pixel intensity (VI) of angiosarcoma vessels by 2.2 ± 0.

View Article and Find Full Text PDF

Background: Postoperative pancreatic fistula remains the most severe and worrisome complication after surgery. Predictive preoperative assessment remains challenging. The authors examine the role of pancreatic computed tomography density in predicting postoperative pancreatic fistula after surgery for pancreatic neuroendocrine tumors.

View Article and Find Full Text PDF

Benzoxaboroles are a family of organoboron molecules, which have been finding over the past few years an increasing number of biological applications, notably for the design of new drugs. Given that these molecules are still relatively new in the biomedical context, very few investigations regarding their formulation have been reported to date. Here, a complete study on the formulation of benzoxaboroles in a biopolymer, poly-l-lactic acid (PLLA), is reported.

View Article and Find Full Text PDF

Electrospinning is the process by which a scaffold containing micrometer and nanometer diameter fibers are drawn from a polymer solution or melt using a large voltage gradient between a polymer emitting source and a grounded collector. Ramakrishna and colleagues first investigated electrospun fibers for neural applications in 2004. After this initial study, electrospun fibers are increasingly investigated for neural tissue engineering applications.

View Article and Find Full Text PDF

The surface of aligned, electrospun poly-L-lactic acid (PLLA) fibers was chemically modified to determine if surface chemistry and hydrophilicity could improve neurite extension from chick dorsal root ganglia. Specifically, diethylenetriamine (DTA, for amine functionalization), 2-(2-aminoethoxy)ethanol (AEO, for alcohol functionalization), or GRGDS (cell adhesion peptide) were covalently attached to the surface of electrospun fibers. Water contact angle measurements revealed that surface modification of electrospun fibers significantly improved fiber hydrophilicity compared to unmodified fibers (p < 0.

View Article and Find Full Text PDF

Superparamagnetic iron oxide nanoparticles (SPIONs) can generate heat when subjected to an alternating magnetic field (AMF). In the European Union, SPIONs actuated by AMF are used in hyperthermia treatment of glioblastoma multiforme, an aggressive form of brain cancer. Current data from clinical trials suggest that this therapy improves patient life expectancy, but their effect on healthy brain cells is virtually unknown.

View Article and Find Full Text PDF

Immediately following spinal cord injury, further injury can occur through several secondary injury cascades. As a consequence of cell lysis, an increase in extracellular Ca(2+) results in additional neuronal loss by inducing apoptosis. Thus, hydrogels that reduce extracellular Ca(2+) concentration may reduce secondary injury severity.

View Article and Find Full Text PDF

In this study, we created a new method of electrospinning capable of controlling the surface structure of individual fibers (fiber nanotopography). The nanotopographical features were created by a phase separation in the fibers as they formed. To control the phase separation, a nonsolvent (a chemical insoluble with the polymer) was added to an electrospinning solution containing poly-l-lactic acid (PLLA) and chloroform.

View Article and Find Full Text PDF

It has become increasingly clear that the cellular microenvironment, in particular the extracellular matrix, plays an important role in regulating cell function. However, the extracellular matrix is extraordinarily complex in both its makeup and its physical properties. Therefore, there is a need to develop model systems to independently evaluate the effect of specific extracellular matrix features upon cells.

View Article and Find Full Text PDF