Motivation: Despite an increase in protein modelling accuracy following the development of AlphaFold2, there remains an accuracy gap between predicted and observed model quality assessment (MQA) scores. In CASP15, variations in AlphaFold2 model accuracy prediction were noticed for quaternary models of very similar observed quality. In this study, we compare plDDT and pTM to their observed counterparts the local distance difference test (lDDT) and TM-score for both tertiary and quaternary models to examine whether reliability is retained across the scoring range under normal modelling conditions and in situations where AlphaFold2 functionality is customized.
View Article and Find Full Text PDFMotivation: The accuracy gap between predicted and experimental structures has been significantly reduced following the development of AlphaFold2 (AF2). However, for many targets, AF2 models still have room for improvement. In previous CASP experiments, highly computationally intensive MD simulation-based methods have been widely used to improve the accuracy of single 3D models.
View Article and Find Full Text PDFIn CASP15, there was a greater emphasis on multimeric modeling than in previous experiments, with assembly structures nearly doubling in number (41 up from 22) since the previous round. CASP15 also included a new estimation of model accuracy (EMA) category in recognition of the importance of objective quality assessment (QA) for quaternary structure models. ModFOLDdock is a multimeric model QA server developed by the McGuffin group at the University of Reading, which brings together a range of single-model, clustering, and deep learning methods to form a consensus of approaches.
View Article and Find Full Text PDFThe IntFOLD server based at the University of Reading has been a leading method over the past decade in providing free access to accurate prediction of protein structures and functions. In a post-AlphaFold2 world, accurate models of tertiary structures are widely available for even more protein targets, so there has been a refocus in the prediction community towards the accurate modelling of protein-ligand interactions as well as modelling quaternary structure assemblies. In this paper, we describe the latest improvements to IntFOLD, which maintains its competitive structure prediction performance by including the latest deep learning methods while also integrating accurate model quality estimates and 3D models of protein-ligand interactions.
View Article and Find Full Text PDFMethods Mol Biol
August 2021
Biologists are increasingly aware of the importance of protein structure in revealing function. The computational tools now exist which allow researchers to model unknown proteins simply on the basis of their primary sequence. However, for the non-specialist bioinformatician, there is a dazzling array of terminology, acronyms, and competing computer software available for this process.
View Article and Find Full Text PDF