A central objective in the study of volition has been to identify how changes in neural activity relate to voluntary-"free will"-movement. The readiness potential (RP) is observed in the EEG as a slow-building signal that precedes action onset. Many consider the RP as a marker of an underlying preparatory process for initiating voluntary movement.
View Article and Find Full Text PDFOur ability to track the paths of multiple visual objects moving between the hemifields requires effective integration of information between the two cerebral hemispheres. Coherent neural oscillations in the gamma band (35-70 Hz) are hypothesized to drive this information transfer. Here we manipulated the need for interhemispheric integration using a novel multiple object tracking (MOT) task in which stimuli either moved between the two visual hemifields, requiring interhemispheric integration, or moved within separate visual hemifields.
View Article and Find Full Text PDFThe non-invasive delivery of electric currents through the scalp (transcranial electrical stimulation) is a popular tool for neuromodulation, mostly due to its highly adaptable nature (waveform, montage) and tolerability at low intensities (< 2 mA). Applied rhythmically, transcranial alternating current stimulation (tACS) may entrain neural oscillations in a frequency- and phase-specific manner, providing a causal perspective on brain-behaviour relationships. While the past decade has seen many behavioural and electrophysiological effects of tACS that suggest entrainment-mediated effects in the brain, it has been difficult to reconcile such reports with the weak intracranial field strengths (< 1 V/m) achievable at conventional intensities.
View Article and Find Full Text PDFRecent history influences subsequent perception, decision-making and motor behaviours. In this article, we address a discrepancy in the effects of recent sensory history on the perceived timing of auditory and visual stimuli. In the synchrony judgement (SJ) task, similar timing relationships in consecutive trials seem more synchronous (i.
View Article and Find Full Text PDFPhase synchronization drives connectivity between neural oscillators, providing a flexible mechanism through which information can be effectively and selectively routed between task-relevant cortical areas. The ability to keep track of objects moving between the left and right visual hemifields, for example, requires the integration of information between the two cerebral hemispheres. Both animal and human studies have suggested that coherent (or phase-locked) gamma oscillations (30-80 Hz) might underlie this ability.
View Article and Find Full Text PDF