Publications by authors named "Nicholas R Lim"

Iron deficiency anemia (IDA) is a major health burden among women in Asia. Key issues in IDA management in Asia are under-diagnosis and under-treatment. The lack of Asia-specific guidelines, and suboptimal utilization of treatment compounds the management of IDA.

View Article and Find Full Text PDF

Genetic disruptions of spindle/centrosome-associated WD40-repeat protein 62 (WDR62) are causative for autosomal recessive primary microcephaly (MCPH) and a broader range of cortical malformations. Since the identification of WDR62 as encoded by the MCPH2 locus in 2010, recent studies that have deleted/depleted WDR62 in various animal models of cortical development have highlighted conserved functions in brain growth. Here, we provide a timely review of our current understanding of WDR62 contributions in the self-renewal, expansion and fate specification of neural stem and progenitor cells that are critical for neocortical development.

View Article and Find Full Text PDF

The second most commonly mutated gene in primary microcephaly (MCPH) patients is wd40-repeat protein 62 (wdr62), but the relative contribution of WDR62 function to the growth of major brain lineages is unknown. Here, we use Drosophila models to dissect lineage-specific WDR62 function(s). Interestingly, although neural stem cell (neuroblast)-specific depletion of WDR62 significantly decreased neuroblast number, brain size was unchanged.

View Article and Find Full Text PDF

Mitotic spindle organization is regulated by centrosomal kinases that potentiate recruitment of spindle-associated proteins required for normal mitotic progress including the microcephaly protein WD40-repeat protein 62 (WDR62). WDR62 functions underlie normal brain development as autosomal recessive mutations and wdr62 loss cause microcephaly. Here we investigate the signaling interactions between WDR62 and the mitotic kinase Aurora A (AURKA) that has been recently shown to cooperate to control brain size in mice.

View Article and Find Full Text PDF

The novel pro-drug of 3'4'-dihydroxyflavonol, NP202, potently reduces myocardial infarct size resulting from ischemia-reperfusion (I/R) through mechanisms that remain to be fully defined. In this study, we investigated whether cardioprotection induced by NP202 depended on activation of the reperfusion injury survival kinase (RISK) pathways. We therefore examined the effects of PD98059 and LY294002, specific inhibitors of the MEK/ERK1/2 and PI3K/Akt pathways, respectively.

View Article and Find Full Text PDF

WD40-repeat protein 62 (WDR62) is a spindle pole protein required for normal cell division and neuroprogenitor differentiation during brain development. Microcephaly-associated mutations in WDR62 lead to mitotic mislocalization, highlighting a crucial requirement for precise WDR62 spatiotemporal distribution, although the regulatory mechanisms are unknown. Here, we demonstrate that the WD40-repeat region of WDR62 is required for microtubule association, whereas the disordered C-terminal region regulates cell-cycle-dependent compartmentalization.

View Article and Find Full Text PDF

DiOHF (3',4'-dihydroxyflavonol) is cardioprotective against I/R (ischaemia/reperfusion) injury. The biological activities of flavonols are associated with kinase modulation to alter cell signalling. We thus investigated the effects of DiOHF on the activation of MAPKs (mitogen-activated protein kinases) that regulate the cardiac stress response.

View Article and Find Full Text PDF