chaffeensis: TRP120 is a multifunctional effector that acts as a ligand mimic to activate evolutionary conserved eukaryotic signaling pathways Notch, Wnt, Hedgehog and Hippo. In addition, TRP120 is also a HECT E3 ubiquitin ligase known to ubiquitinate several host cell regulatory proteins (FBW7, PCGF5 and ENO-1) for degradation. We previously determined that TRP120 ubiquitinates the Notch negative regulator, FBW7, to maintain Notch signaling and promote infection.
View Article and Find Full Text PDFhas evolved multiple strategies to evade innate defenses of the mononuclear phagocyte. Recently, we reported the tandem repeat protein (TRP)120 effector functions as a Notch ligand mimetic and a ubiquitin ligase that degrades the nuclear tumor suppressor, F-box and WD repeat domain-containing 7, a negative regulator of Notch. The Notch intracellular domain (NICD) is known to inhibit apoptosis primarily by interacting with X-linked inhibitor of apoptosis rotein (XIAP) to prevent degradation.
View Article and Find Full Text PDFTRP120 effector has evolved short linear motif (SLiM) ligand mimicry to repurpose multiple evolutionarily conserved cellular signaling pathways, including Wnt, Notch, and Hedgehog. In this investigation, we demonstrate that and recombinant TRP120 deactivate Hippo signaling, resulting in the activation of Hippo transcription coactivator Yes-associated protein (Yap). Moreover, a homologous 6 amino acid (QDVASH) SLiM shared by TRP120 and Wnt3a/5a ligands phenocopied Yap and β-catenin activation induced by rTRP120, and Wnt5a.
View Article and Find Full Text PDFAs an obligately intracellular bacterial pathogen that selectively infects the mononuclear phagocyte, has evolved sophisticated mechanisms to subvert innate immune defenses. While the bacterium accomplishes this through a variety of mechanisms, a rapidly expanding body of evidence has revealed that has evolved survival strategies that are directed by the versatile, intrinsically disordered, 120 kDa tandem repeat protein (TRP120) effector. establishes infection by manipulating multiple evolutionarily conserved cellular signaling pathways through effector-host interactions to subvert innate immune defenses.
View Article and Find Full Text PDFTRP120 effector has evolved short linear motif (SLiM) ligand mimicry to repurpose multiple evolutionarily conserved cellular signaling pathways including Wnt, Notch and Hedgehog. In this investigation, we demonstrate that and recombinant TRP120 deactivate Hippo signaling resulting in activation of Hippo transcription coactivator Yap and target gene expression. Moreover, a homologous 6 amino acid (QDVASH) SLiM shared by TRP120 and Wnt3a/5a ligands phenocopied Yap and β-catenin activation induced by rTRP120 and Wnt5a.
View Article and Find Full Text PDFUnlabelled: has evolved multiple strategies to evade innate defenses of the mononuclear phagocyte. Recently, we reported the TRP120 effector functions as a Notch ligand mimetic and a ubiquitin ligase that degrades the nuclear tumor suppressor, F-box and WD repeat domain-containing 7 (FBW7), a negative regulator of Notch. The Notch receptor intracellular domain (NICD) is known to inhibit apoptosis primarily by interacting with X-linked inhibitor of apoptosis protein (XIAP) to prevent degradation.
View Article and Find Full Text PDFEhrlichia chaffeensis (E. chaffeensis) has evolved eukaryotic ligand mimicry to repurpose multiple cellular signaling pathways for immune evasion. In this investigation, we demonstrate that TRP120 has a novel repetitive short linear motif (SLiM) that activates the evolutionarily conserved Hedgehog (Hh) signaling pathway to inhibit apoptosis.
View Article and Find Full Text PDF