Publications by authors named "Nicholas Pashos"

Liver kinase B1 (LKB1) is a potent tumor suppressor that regulates cellular energy balance and metabolism as an upstream kinase of the AMP-activated protein kinase (AMPK) pathway. LKB1 regulates cancer cell invasion and metastasis in multiple cancer types, including breast cancer. In this study, we evaluated LKB1's role as a regulator of the tumor microenvironment (TME).

View Article and Find Full Text PDF

Many of the > 3.5 million breast cancer survivors in the US have undergone breast reconstruction following mastectomy. Patients report that nipple-areolar complex (NAC) reconstruction is psychologically important, yet current reconstruction techniques commonly result in inadequate shape, symmetry, and nipple projection.

View Article and Find Full Text PDF

Background: Complex abdominal wall reconstruction using biologic mesh can lead to increased recurrence rates, nonincorporation, and high perioperative costs. We developed a novel decellularization method and applied it to porcine muscle fascia to mirror target-tissue architecture. The aims of this study were to analyze mechanical strength and tissue-graft incorporation.

View Article and Find Full Text PDF

There are more than 3 million breast cancer survivors living in the United States of which a significant number have undergone mastectomy followed by breast and nipple-areolar complex (NAC) reconstruction. Current strategies for NAC reconstruction are dependent on nonliving or nonpermanent techniques, including tattooing, nipple prosthetics, or surgical nipple-like structures. Described herein is a tissue engineering approach demonstrating the feasibility of an allogeneic acellular graft for nipple reconstruction.

View Article and Find Full Text PDF

Whole organ tissue engineering is a promising approach to address organ shortages in many applications, including lung transplantation for patients with chronic pulmonary disease. Engineered lungs may be derived from animal sources after removing cellular content, exposing the extracellular matrix to serve as a scaffold for recellularization with human cells. However, the use of xenogeneic tissue sources in human transplantation raises concerns due to the presence of the antigenic Gal epitope.

View Article and Find Full Text PDF

Adipose stem cells (ASCs) have gained attention in the fields of stem cells regenerative medicine due to their multifaceted therapeutic capabilities. Promising preclinical evidence of ASCs has supported the substantial interest in the use of these cells as therapy for human disease. ASCs are an adult stem cell resident in adipose tissue with the potential to differentiation along mesenchymal lineages.

View Article and Find Full Text PDF

Decellularized human adipose tissue has potential clinical utility as a processed biological scaffold for soft tissue cosmesis, grafting, and reconstruction. Adipose tissue decellularization has been accomplished using enzymatic-, detergent-, and/or solvent-based methods. To examine the hypothesis that distinct decellularization processes may yield scaffolds with differing compositions, the current study employed mass spectrometry to compare the proteomes of human adipose-derived matrices generated through three independent methods combining enzymatic-, detergent-, and/or solvent-based steps.

View Article and Find Full Text PDF

Background: Triple-negative breast cancer (TNBC) subtypes are clinically aggressive and cannot be treated with targeted therapeutics commonly used in other breast cancer subtypes. The claudin-low (CL) molecular subtype of TNBC has high rates of metastases, chemoresistance and recurrence. There exists an urgent need to identify novel therapeutic targets in TNBC; however, existing models utilized in target discovery research are limited.

View Article and Find Full Text PDF

A significant number of patients undergo mastectomies and breast reconstructions every year using many surgical-based techniques to reconstruct the nipple-areolar complex (NAC). Described herein is a tissue engineering approach that may permit a human NAC onlay graft during breast reconstruction procedures. By applying decellularization, which is the removal of cellular components from tissue, to an intact whole donor NAC, the extracellular matrix (ECM) structure of the NAC is preserved.

View Article and Find Full Text PDF

Breast cancer is one of the most frequently diagnosed malignancies in women and is characterized by predominantly estrogen dependent growth. Endocrine disruptors (EDCs) have estrogenic properties which have been shown to increase breast cancer risk. While the direct effects of EDCs on breast cancer cell biology and tumor progression have been well studied, the roles for EDCs on tumor microenvironment composition, signaling and structure are incompletely defined.

View Article and Find Full Text PDF

Effective re-endothelialization is critical for the use of decellularized scaffolds for ex vivo lung engineering. Current approaches yield insufficiently re-endothelialized scaffolds that haemorrhage and become thrombogenic upon implantation. Herein, gravity-driven seeding coupled with bioreactor culture facilitated widespread distribution and engraftment of endothelial cells throughout rat lung scaffolds.

View Article and Find Full Text PDF

With the advent of whole organ decellularization, extracellular matrix scaffolds suitable for organ engineering were generated from numerous tissues, including the heart, lung, liver, kidney, and pancreas, for use as alternatives to traditional organ transplantation. Biomedical researchers now face the challenge of adequately and efficiently recellularizing these organ scaffolds. Herein, an overview of whole organ decellularization and a thorough review of the current literature for whole organ recellularization are presented.

View Article and Find Full Text PDF

There are an insufficient number of lungs available to meet current and future organ transplantation needs. Bioartificial tissue regeneration is an attractive alternative to classic organ transplantation. This technology utilizes an organ's natural biological extracellular matrix (ECM) as a scaffold onto which autologous or stem/progenitor cells may be seeded and cultured in such a way that facilitates regeneration of the original tissue.

View Article and Find Full Text PDF

Engineered tissue strategies for central nervous system (CNS) repair have the potential for localizing treatment using a wide variety of cells or growth factors. However, these strategies are often limited by their ability to address only one aspect of the injury. Here we report the development of a novel alginate construct that acts as a multifunctional tissue scaffold for CNS repair, and as a localized growth factor delivery vehicle.

View Article and Find Full Text PDF