Publications by authors named "Nicholas P Piesco"

Purpose Of Review: Exercise and passive motion exert reparative effects on inflamed joints, whereas excessive mechanical forces initiate cartilage destruction as observed in osteoarthritis. However, the intracellular mechanisms that convert mechanical signals into biochemical events responsible for cartilage destruction and repair remain paradoxical. This review summarizes how signals generated by mechanical stress may initiate repair or destruction of cartilage.

View Article and Find Full Text PDF

Urethanes are frequently used in biomedical applications because of their excellent biocompatibility. However, their use has been limited to bioresistant polyurethanes. The aim of this study was to develop a nontoxic biodegradable polyurethane and to test its potential for tissue compatibility.

View Article and Find Full Text PDF

Localized juvenile periodontitis (LJP) is an aggressive periodontal disease of familial nature. Neutrophils from a majority of patients with this disease exhibit decreased Chemotaxis with increased adherence, oxidative burst, and degranulation in response to opsonized bacteria. It is proposed that the biological basis for these altered neutrophil functions in LJP may be due either to intrinsic cell abnormalities or to the effect of factors present in the sera of LJP patients, which can modulate neutrophil functions.

View Article and Find Full Text PDF

Cytodifferentiation and hard tissue formation were studied in Anolis to collect information regarding the phylogenetic history of enamel and the functional significance of the events seen in the mammalian tooth during differentiation. The differentiation of the ameloblasts of Anolis, like that of mammals, shows two phases: In the early phase, the cells are short and rich in free ribosomes, in the late phase the cells elongate, develop an extensive rough endoplasmic reticulum, and the Golgi apparatus moves into that part of the cell next to the basal lamina (the cell apex). The early epithelial-mesenchymal interface resembles that of mammals, suggesting that early mechanisms of induction and epithelial-mesenchymal interaction are similar in Anolis and in mammals.

View Article and Find Full Text PDF