Publications by authors named "Nicholas P Burnett"

Curated undergraduate research experiences have been widely used at colleges and universities for decades to build student interest, technical preparation, and confidence in the pursuit of scientific careers. Educators often employ standardized survey instruments to evaluate learning outcomes for research experiences, but many of these assessments consider only technical skill development and career interests and are not rooted in discrete pedagogical theories. As higher education aims to create inclusive and equitable learning experiences for students, we argue that pedagogical assessment tools for undergraduate research experiences need to expand to consider outcomes such as increased science literacy, confidence in relational "soft" skills, and a sense of belonging to a community that values scientific inquiry.

View Article and Find Full Text PDF

Dispersal of reproductive propagules determines recruitment patterns and connectivity among populations and can influence how populations respond to major disturbance events. Dispersal distributions can depend on propagule release strategies. For instance, the bull kelp, , can release propagules (spores) from two heights in the water column ("bimodal release"): at the water surface, directly from the reproductive tissues (sori) on the kelp's blades, and near the seafloor after the sori abscise and sink through the water column.

View Article and Find Full Text PDF

The biological structures that fill the environment around us are derived from materials produced by organisms. These biological materials are key to the mechanical function of organisms. The pathways and growth processes that produce biological materials can influence the mechanical properties of the materials, which can in turn shape the higher level function of the system into which the materials are incorporated.

View Article and Find Full Text PDF

Kelp and other habitat-forming seaweeds in the intertidal zone are exposed to a suite of environmental factors, including temperature and hydrodynamic forces, that can influence their growth, survival, and ecological function. Relatively little is known about the interactive effect of temperature and hydrodynamic forces on kelp, especially the effect of cold stress on biomechanical resistance to hydrodynamic forces. We used the intertidal kelp Egregia menziesii to investigate how freezing in air during a low tide changes the kelp's resistance to breaking from hydrodynamic forces.

View Article and Find Full Text PDF

Heat waves are becoming increasingly common due to climate change, making it crucial to identify and understand the capacities for insect pollinators, such as honey bees, to avoid overheating. We examined the effects of hot, dry air temperatures on the physiological and behavioral mechanisms that honey bees use to fly when carrying nectar loads, to assess how foraging is limited by overheating or desiccation. We found that flight muscle temperatures increased linearly with load mass at air temperatures of 20 or 30 °C, but, remarkably, there was no change with increasing nectar loads at an air temperature of 40 °C.

View Article and Find Full Text PDF

Flying insects often forage among cluttered vegetation that forms a series of obstacles in their flight path. Recent studies have focused on behaviors needed to navigate clutter while avoiding all physical contact and, as a result, we know little about flight behaviors that do involve encounters with obstacles. Here, we challenged carpenter bees (Xylocopa varipuncta) to fly through narrow gaps in an obstacle course to determine the kinds of obstacle encounters they experience, as well as the consequences for flight performance.

View Article and Find Full Text PDF

Macroalgae provide food and habitat to a diversity of organisms in marine systems, so structural damage and breakage of thallus tissue can have important ecological consequences for the composition and dynamics of marine communities. Common sources of macroalgal damage include breakage by hydrodynamic forces imposed by ambient water currents and waves, tissue consumption by herbivores, and injuries due to epibionts. Many macroalgal species have biomechanical designs that minimize damage by these sources, such as flexibly reconfiguring into streamlined shapes in flow, having either strong or extensible tissues that are tough, and having chemical and morphological defenses against herbivores and epibionts.

View Article and Find Full Text PDF

Maximum vertical force production (F) is an integral measure of flight performance that generally scales with size. Numerous methods of measuring F and body size are accessible to entomologists, but we do not know whether method selection affects inter- and intraspecific comparisons of F-size scaling. We compared two common techniques for measuring F in bumblebees () and mason bees (), and examined F scaling using five size metrics.

View Article and Find Full Text PDF

Bees flying through natural landscapes frequently encounter physical challenges, such as wind and cluttered vegetation, but the influence of these factors on flight performance remains unknown. We analyzed 548 videos of wild-caught honeybees (Apis mellifera) flying through an enclosure containing a field of vertical obstacles that bees could choose to fly within (through open corridors, without maneuvering) or above. We varied obstacle field height and wind condition (still, headwinds or tailwinds), and examined how these factors affected bees' flight altitude, ground speed, and side-to-side casting motions (lateral excursions).

View Article and Find Full Text PDF

Macroalgae are ecologically important organisms that often inhabit locations with physically challenging water motion. The biomechanical traits that permit their survival in these conditions have been of interest to biologists and engineers alike, but logistical and technical challenges of conducting investigations in macroalgal habitats have often prevented optimal study of these traits. Here, we review field methods for quantifying three major components of macroalgal biomechanics in moving water: fluid flow, macroalgal form, and hydrodynamic force.

View Article and Find Full Text PDF

AbstractHerbivores can drastically alter the morphology of macroalgae by directly consuming tissue and by inflicting structural wounds. Wounds can result in large amounts of tissue breaking away from macroalgae, amplifying the damage initially caused by herbivores. Herbivores that commonly wound macroalgae often occur over only a portion of a macroalga's lifespan or geographic range.

View Article and Find Full Text PDF

Premise: The resistance of macroalgae to hydrodynamic forces imposed by ambient water motion depends in part on the mechanical properties of their tissues. In wave-swept habitats, tissues are stretched (strained) at different rates as hydrodynamic forces change. Previous studies of mechanical properties of macroalgal tissues have used either a single strain rate or a small range of strain rates.

View Article and Find Full Text PDF

Bees often forage in habitats with cluttered vegetation and unpredictable winds. Navigating obstacles in wind presents a challenge that may be exacerbated by wind-induced motions of vegetation. Although wind-blown vegetation is common in natural habitats, we know little about how the strategies of bees for flying through clutter are affected by obstacle motion and wind.

View Article and Find Full Text PDF

Mussels are ecologically important organisms that can survive in subtidal and intertidal zones where they experience thermal stress. We know little about how mussels from different tidal habitats respond to thermal stress. We used the mussel Mytilus galloprovincialis from separate subtidal and intertidal populations to test whether heart rate and indicators of potential aerobic (citrate synthase activity) and anaerobic (cytosolic malate dehydrogenase activity) metabolic capacity are affected by increased temperatures while exposed to air or submerged in water.

View Article and Find Full Text PDF

Water motion in coastal areas can produce hydrodynamic forces that damage or dislodge benthic macroalgae if the tissues of macroalgae are not sufficiently strong. Some macroalgae vary their morphology and strength in response to ambient water motion, but little is known of how morphology and strength of macroalgae change relative to one another across flow regimes. Here, we use Turbinaria ornata, an ecologically important macroalga, to study how both the morphology and strength of macroalgae vary with ambient water motion.

View Article and Find Full Text PDF

In coastal habitats, physical disturbances of benthic organisms can be caused by natural events like wave-born objects and human activity like trampling, and these disturbances can be sub-lethal (e.g., resulting in the organism's displacement).

View Article and Find Full Text PDF

The resistance of macroalgae to damage by hydrodynamic forces depends on the mechanical properties of their tissues. Although factors such as water-flow environment, algal growth rate and damage by herbivores have been shown to influence various material properties of macroalgal tissues, the interplay of these factors as they change seasonally and affect algal mechanical performance has not been worked out. We used the perennial kelp to study how the material properties of the rachis supporting a frond changed seasonally over a 2 year period, and how those changes correlated with seasonal patterns of the environment, growth rate and herbivore load.

View Article and Find Full Text PDF

In nature, plants regularly interact with herbivores and with wind. Herbivores can wound and alter the structure of plants, whereas wind can exert aerodynamic forces that cause the plants to flutter or sway. While herbivory has many negative consequences for plants, fluttering in wind can be beneficial for plants by facilitating gas exchange and loss of excess heat.

View Article and Find Full Text PDF