The generalisability of critical illness molecular phenotypes to low- and middle-income countries (LMICs) is unknown. We show that molecular phenotypes derived in high-income countries (hyperinflammatory and hypoinflammatory, reactive and uninflamed) stratify sepsis patients in Uganda by physiological severity, mortality risk and dysregulation of key pathobiological domains. A classifier model including data available at the LMIC bedside modestly discriminated phenotype assignment (area under the receiver operating characteristic curve (AUROC) 0.
View Article and Find Full Text PDFIntroduction: Rift Valley Fever (RVF) has caused outbreaks in Africa, impacting human health and animal trade. Recently, sporadic detections among humans and animals in East Africa have replaced large-scale outbreaks. We assessed RVF knowledge levels in East and Central Africa across countries with different epidemiological profiles.
View Article and Find Full Text PDFRationale: The global burden of sepsis is concentrated in sub-Saharan Africa, where inciting pathogens are diverse and HIV co-infection is a major driver of poor outcomes. Biological heterogeneity inherent to sepsis in this setting is poorly defined.
Objectives: To identify dominant pathobiological signatures of sepsis in sub-Saharan Africa and their relationship to clinical phenotypes, patient outcomes, and biological classifications of sepsis identified in high-income-countries (HICs).
Background: Understanding of immune cell phenotypes associated with inflammatory and immunosuppressive host responses in sepsis is imprecise, particularly in low- and middle-income countries, where the global sepsis burden is concentrated. In these settings, elucidation of clinically relevant immunophenotypes is necessary to determine the relevance of emerging therapeutics and refine mechanistic investigations of sepsis immunopathology. Methods: In a prospective cohort of adults hospitalized with suspected sepsis in Uganda (N = 43; median age 46 years [IQR 36-59], 24 [55.
View Article and Find Full Text PDFObjectives: In high-income countries (HICs), sepsis endotypes defined by distinct pathobiological mechanisms, mortality risks, and responses to corticosteroid treatment have been identified using blood transcriptomics. The generalizability of these endotypes to low-income and middle-income countries (LMICs), where the global sepsis burden is concentrated, is unknown. We sought to determine the prevalence, prognostic relevance, and immunopathological features of HIC-derived transcriptomic sepsis endotypes in sub-Saharan Africa.
View Article and Find Full Text PDFGenetic characterisation of circulating influenza viruses directs annual vaccine strain selection and mitigation of infection spread. We used next-generation sequencing to locally generate whole genomes from 116 A(H1N1)pdm09 and 118 A(H3N2) positive patient swabs collected across Uganda between 2010 and 2018. We recovered sequences from 92% (215/234) of the swabs, 90% (193/215) of which were whole genomes.
View Article and Find Full Text PDFBackground: The immunopathology of disseminated HIV-associated tuberculosis (HIV/TB), a leading cause of critical illness and death among persons living with HIV in sub-Saharan Africa, is incompletely understood. Reflective of hematogenously disseminated TB, detection of lipoarabinomannan (LAM) in urine is associated with greater bacillary burden and poor outcomes in adults with HIV/TB.
Methods: We determined the relationship between detection of urine TB-LAM, organ dysfunction, and host immune responses in a prospective cohort of adults hospitalized with severe HIV/TB in Uganda.
The global burden of sepsis is concentrated in sub-Saharan Africa (SSA), where epidemic HIV and unique pathogen diversity challenge the effective management of severe infections. In this context, patient stratification based on biomarkers of a dysregulated host response may identify subgroups more likely to respond to targeted immunomodulatory therapeutics. In a prospective cohort of adults hospitalized with suspected sepsis in Uganda, we applied machine learning methods to develop a prediction model for 30-day mortality that integrates physiology-based risk scores with soluble biomarkers reflective of key domains of sepsis immunopathology.
View Article and Find Full Text PDFBackground: The global burden of sepsis is concentrated in high HIV-burden settings in sub-Saharan Africa (SSA). Despite this, little is known about the immunopathology of sepsis in persons with HIV (PWH) in the region. We sought to determine the influence of HIV on host immune responses and organ dysfunction among adults hospitalized with suspected sepsis in Uganda.
View Article and Find Full Text PDFBackground: The global burden of sepsis is concentrated in sub-Saharan Africa, where severe infections disproportionately affect young, HIV-infected adults and high-burden pathogens are unique. In this context, poor understanding of sepsis immunopathology represents a crucial barrier to development of locally-effective treatment strategies. We sought to determine inter-individual immunologic heterogeneity among adults hospitalized with sepsis in a sub-Saharan African setting, and characterize associations between immune subtypes, infecting pathogens, and clinical outcomes.
View Article and Find Full Text PDFAmong a prospective cohort of children and adults admitted to a national COVID-19 treatment unit in Uganda from March to December 2020, we characterized the epidemiology of and risk factors for severe illness. Across two epidemic phases differentiated by varying levels of community transmission, the proportion of patients admitted with WHO-defined severe COVID-19 ranged from 5% (7/146; 95% CI: 2-10) to 33% (41/124; 95% CI: 25-42); 21% (26/124; 95% CI: 14-29%) of patients admitted during the peak phase received oxygen therapy. Severe COVID-19 was associated with older age, male sex, and longer duration of illness before admission.
View Article and Find Full Text PDFThe global burden of sepsis is concentrated in sub-Saharan Africa, where extensive pathogen diversity and limited laboratory capacity challenge targeted antimicrobial management of life-threatening infections. In this context, established and emerging rapid pathogen diagnostics may stratify sepsis patients into subgroups with prognostic and therapeutic relevance. In a prospective cohort of adults (age ≥18 years) hospitalized with suspected sepsis in Uganda, we stratified patients using rapid diagnostics for HIV, tuberculosis (TB), malaria, and influenza, and compared clinical characteristics and 30-day outcomes across these pathogen-driven subgroups.
View Article and Find Full Text PDFBackground: Influenza is an important contributor to acute respiratory illness, including pneumonia, and results in substantial morbidity and mortality globally. Understanding the local burden of influenza-associated severe disease can inform decisions on allocation of resources toward influenza control programs. Currently, there is no national influenza vaccination program in Uganda.
View Article and Find Full Text PDFBackground: Precision public health is a novel set of methods to target disease prevention and mitigation interventions to high-risk subpopulations. We applied a precision public health strategy to syndromic surveillance for severe acute respiratory infection (SARI) in Uganda by combining spatiotemporal analytics with genomic sequencing to detect and characterize viral respiratory pathogens with epidemic potential.
Methods: Using a national surveillance network we identified patients with unexplained, influenza-negative SARI from 2010 to 2015.
In this paper, we report the epidemic characteristics of the three co-circulating influenza viruses (i.e., A/H1N1, A/H3N2, and B) in two tropical African cities-Kampala and Entebbe, Uganda-over an eight-year period (2008-2015).
View Article and Find Full Text PDFInfluenza Other Respir Viruses
July 2018
Background: The association of influenza with meteorological variables in tropical climates remains controversial. Here, we investigate the impact of weather conditions on influenza in the tropics and factors that may contribute to this uncertainty.
Methods: We computed the monthly viral positive rate for each of the 3 circulating influenza (sub)types (ie, A/H1N1, A/H3N2, and B) among patients presenting with influenza-like illness (ILI) or severe acute respiratory infections (SARI) in 2 Ugandan cities (Entebbe and Kampala).
In sub-Saharan Africa, little is known about the epidemiology of pandemic-prone influenza viruses in urban settings. Using data from a prospective sentinel surveillance network, we characterized the emergence, epidemiology, and transmission dynamics of 2009 pandemic A/H1N1 influenza (H1N1pdm09) in Kampala, Uganda. After virus introduction via international air travel from England in June 2009, we estimated the basic reproductive number in Kampala to be 1.
View Article and Find Full Text PDFRationale: Little is known about the epidemiology of severe acute respiratory infection (SARI) or influenza in sub-Saharan Africa. Characterization of influenza transmission dynamics and risk factors for severe disease and mortality is critical to inform prevention and mitigation strategies.
Objectives: To characterize the epidemiology and transmission dynamics of influenza and risk factors for influenza-associated severe respiratory infection in Uganda.
In recent decades, the majority of human plague cases (caused by Yersinia pestis) have been reported from Africa. In an effort to reduce the risk of the disease in this area, we evaluated the efficacy of a host-targeted rodent bait containing the insecticide imidacloprid for controlling fleas on house-dwelling commensal rodents in a plague-endemic region of northwestern Uganda. Results demonstrated that the use of a palatable, rodent-targeted, wax-based bait cube was effective at reducing the prevalence of fleas on commensal rodents and flea burdens on these animals at day 7 postbait exposure, but lacked significant residual activity, allowing flea populations to rebound in the absence of additional bait applications.
View Article and Find Full Text PDFPlague, a life-threatening flea-borne zoonosis caused by Yersinia pestis, has most commonly been reported from eastern Africa and Madagascar in recent decades. In these regions and elsewhere, prevention and control efforts are typically targeted at fine spatial scales, yet risk maps for the disease are often presented at coarse spatial resolutions that are of limited value in allocating scarce prevention and control resources. In our study, we sought to identify sub-village level remotely sensed correlates of elevated risk of human exposure to plague bacteria and to project the model across the plague-endemic West Nile region of Uganda and into neighboring regions of the Democratic Republic of Congo.
View Article and Find Full Text PDFThe West Nile region of Uganda represents an epidemiologic focus for human plague in east Africa. However, limited capacity for diagnostic laboratory testing means few clinically diagnosed cases are confirmed and the true burden of disease is undetermined. The aims of the study were 1) describe the spatial distribution of clinical plague cases in the region, 2) identify ecologic correlates of incidence, and 3) incorporate these variables into predictive models that define areas of plague risk.
View Article and Find Full Text PDF