Background: Vaccine development against Chlamydia, a prevalent sexually transmitted infection (STI), is imperative due to its global public health impact. However, significant challenges arise in the production of effective subunit vaccines based on recombinant protein antigens, particularly with membrane proteins like the Major Outer Membrane Protein (MOMP).
Methods: Cell-free protein synthesis (CFPS) technology is an attractive approach to address these challenges as a method of high-throughput membrane protein and protein complex production coupled with nanolipoprotein particles (NLPs).
Bacterial infections are an urgent public health priority. The application of mRNA vaccine technology to prevent bacterial infections is a promising therapeutic strategy undergoing active development. This article discusses recent advances and limitations of mRNA vaccines to prevent bacterial diseases and provides perspectives on future research directions.
View Article and Find Full Text PDFWhile there is a growing appreciation of three-dimensional (3D) neural tissues (i.e., hydrogel-based, organoids, and spheroids), shown to improve cellular health and network activity to mirror brain-like activity , functional assessment using current electrophysiology techniques (e.
View Article and Find Full Text PDFFentanyl is one of the most common opioid analgesics administered to patients undergoing surgery or for chronic pain management. While the side effects of chronic fentanyl abuse are recognized (e.g.
View Article and Find Full Text PDFSubunit vaccines offer advantages over more traditional inactivated or attenuated whole-cell-derived vaccines in safety, stability, and standard manufacturing. To achieve an effective protein-based subunit vaccine, the protein antigen often needs to adopt a native-like conformation. This is particularly important for pathogen-surface antigens that are membrane-bound proteins.
View Article and Find Full Text PDFA worldwide estimate of over one million STIs are acquired daily and there is a desperate need for effective preventive as well as therapeutic measures to curtail this global health burden. Vaccines have been the most effective means for the control and potential eradication of infectious diseases; however, the development of vaccines against STIs has been a daunting task requiring extensive research for the development of safe and efficacious formulations. Nanoparticle-based vaccines represent a promising platform as they offer benefits such as targeted antigen presentation and delivery, co-localized antigen-adjuvant combinations for enhanced immunogenicity, and can be designed to be biologically inert.
View Article and Find Full Text PDFAnimal models have expanded our understanding of temporal lobe epilepsy (TLE). However, translating these to cell-specific druggable hypotheses is not explored. Herein, we conducted an integrative insilico-analysis of an available transcriptomics dataset obtained from animals with pilocarpine-induced-TLE.
View Article and Find Full Text PDFCurr Opin Pharmacol
October 2021
Recent advances in microphysiological systems have made significant strides to include design features that reconstruct key elements found in the brain, and in parallel advance technologies to detect the activity of electrogenic cells that form neural networks. In particular, three-dimensional multielectrode arrays (3D MEAs) are being developed with increasing levels of spatial and temporal precision, difficult to achieve with current 2D MEAs, insertable MEA probes, and/or optical imaging of calcium dynamics. Thus, providing a means to monitor the flow of neural network activity within all three dimensions (X, Y, and Z) of the engineered tissue.
View Article and Find Full Text PDFis a sexually transmitted bacterium that infects over 130 million individuals worldwide annually. To implement a vaccine, we developed a cell-free co-translational system to express the major outer membrane protein (MOMP). This approach uses a nanolipoprotein particles (tNLP) made from ApoA1 protein, amphiphilic telodendrimer and lipids that self-assemble to form 10-25 nm discs.
View Article and Find Full Text PDFLung-localized CD4 T cells play a critical role in the control of influenza virus infection and can provide broadly protective immunity. However, current influenza vaccination strategies primarily target influenza hemagglutinin (HA) and are administered peripherally to induce neutralizing antibodies. We have used an intranasal vaccination strategy targeting the highly conserved influenza nucleoprotein (NP) to elicit broadly protective lung-localized CD4 T cell responses.
View Article and Find Full Text PDFSubunit vaccines are theoretically safe and easy to manufacture but require effective adjuvants and delivery systems to yield protective immunity, particularly at critical mucosal sites such as the lung. We investigated nanolipoprotein particles (NLPs) containing the Toll-like receptor 4 agonist monophosphoryl lipid A (MPLA) as a platform for intranasal vaccination against . Modified lipids enabled attachment of disparate spore and toxin protein antigens.
View Article and Find Full Text PDFBrain-on-a-chip systems are designed to simulate brain activity using traditional in vitro cell culture on an engineered platform. It is a noninvasive tool to screen new drugs, evaluate toxicants, and elucidate disease mechanisms. However, successful recapitulation of brain function on these systems is dependent on the complexity of the cell culture.
View Article and Find Full Text PDFNeurons form complex networks that evolve over multiple time scales. In order to thoroughly characterize these networks, time dependencies must be explicitly modeled. Here, we present a statistical model that captures both the underlying structural and temporal dynamics of neuronal networks.
View Article and Find Full Text PDFObjective: Postmortem brains of patients diagnosed with HIV-1-associated neurocognitive disorders (HAND) exhibit loss of dendrites. However, the mechanisms by which synapses are damaged are not fully understood.
Design: Dendrite length and remodeling occurs via microtubules, the dynamics of which are regulated by microtubule-binding proteins, including microtubule-associated protein 2 (MAP2).
In vivo delivery of large RNA molecules has significant implications for novel gene therapy, biologics delivery, and vaccine applications. We have developed cationic nanolipoprotein particles (NLPs) to enhance the complexation and delivery of large self-amplifying mRNAs (replicons) in vivo. NLPs are high-density lipoprotein (HDL) mimetics, comprised of a discoidal lipid bilayer stabilized by apolipoproteins that are readily functionalized to provide a versatile delivery platform.
View Article and Find Full Text PDFThree-dimensional (3D) in vitro models have become increasingly popular as systems to study cell-cell and cell-ECM interactions dependent on the spatial, mechanical, and chemical cues within the environment of the tissue, which is limited in traditional two-dimensional (2D) models. Although electrophysiological recordings of neuronal action potentials through 2D microelectrode arrays (MEAs) are a common and trusted method of evaluating neuronal function, network communication, and response to chemicals and biologicals, there are currently limited options for measuring electrophysiological activity from many locations simultaneously throughout a 3D network of neurons in vitro. Here, we have developed a thin-film, 3D flexible microelectrode array (3DMEA) that non-invasively interrogates a 3D culture of neurons and can accommodate 256 channels of recording or stimulation.
View Article and Find Full Text PDFMuch of what is currently known about the role of the blood-brain barrier (BBB) in regulating the passage of chemicals from the blood stream to the central nervous system (CNS) comes from animal in vivo models (requiring extrapolation to human relevance) and 2D static in vitro systems, which fail to capture the rich cell-cell and cell-matrix interactions of the dynamic 3D in vivo tissue microenvironment. In this work we have developed a BBB platform that allows for a high degree of customization in cellular composition, cellular orientation, and physiologically-relevant fluid dynamics. The system characterized and presented in this study reproduces key characteristics of a BBB model (e.
View Article and Find Full Text PDFBackground: The emergence of three-dimensional (3D) cell culture in neural tissue engineering has significantly elevated the complexity and relevance of in vitro systems. This is due in large part to the incorporation of biomaterials to impart structural dimensionality on the neuronal cultures. However, a comprehensive understanding of how key seeding parameters affect changes in cell distribution and viability remain unreported.
View Article and Find Full Text PDFThe brain's extracellular matrix (ECM) is a macromolecular network composed of glycosaminoglycans, proteoglycans, glycoproteins, and fibrous proteins. In vitro studies often use purified ECM proteins for cell culture coatings, however these may not represent the molecular complexity and heterogeneity of the brain's ECM. To address this, we compared neural network activity (over 30 days in vitro) from primary neurons co-cultured with glia grown on ECM coatings from decellularized brain tissue (bECM) or MaxGel, a non-tissue-specific ECM.
View Article and Find Full Text PDFMHC proteins that present peptide ligands for recognition by TCR form nanoscale clusters on the cell membrane of APCs. How the extent of MHC clustering controls productive TCR engagement and TCR-mediated signaling has not been systematically studied. To evaluate the role of MHC clustering, we exploited nanoscale discoidal membrane mimetics (nanolipoprotein particles) to capture and present peptide-MHC (pMHC) ligands at various densities.
View Article and Find Full Text PDFQuantitatively benchmarking similarities and differences between the in vivo central nervous system and in vitro neuronal cultures can qualify discrepancies in functional responses and establish the utility of in vitro platforms. In this work, extracellular electrophysiology responses of cortical neurons in awake, freely-moving animals were compared to in vitro cultures of dissociated cortical neurons. After exposure to two well-characterized drugs, atropine and ketamine, a number of key points were observed: (1) significant differences in spontaneous firing activity for in vivo and in vitro systems, (2) similar response trends in single-unit spiking activity after exposure to atropine, and (3) greater sensitivity to the effects of ketamine in vitro.
View Article and Find Full Text PDFNanolipoprotein particles (NLPs) are reconstituted high-density lipoproteins, consisting of a phospholipid bilayer stabilized by an apolipoprotein scaffold protein. This class of nanoparticle has been a vital tool in the study of membrane proteins, and in recent years has been increasingly used for in vivo applications. Previous work demonstrated that the composition of the lipid bilayer component affects the stability of these particles in serum solutions.
View Article and Find Full Text PDFNanolipoprotein particles (NLPs), composed of membrane scaffold proteins and lipids, have been used to support membrane proteins in a native-like bilayer environment for biochemical and structural studies. Traditionally, these NLPs have been prepared by the controlled removal of detergent from a detergent-solubilized protein-lipid mixture. Recently, an alternative method has been developed using direct cell-free expression of the membrane scaffold protein in the presence of preformed lipid vesicles, which spontaneously produces NLPs without the need for detergent at any stage.
View Article and Find Full Text PDFChlamydia is a prevalent sexually transmitted disease that infects more than 100 million people worldwide. Although most individuals infected with are initially asymptomatic, symptoms can arise if left undiagnosed. Long-term infection can result in debilitating conditions such as pelvic inflammatory disease, infertility, and blindness.
View Article and Find Full Text PDF