Publications by authors named "Nicholas Newcombe"

Ghrelin plays a major physiological role in the control of food intake, and inverse agonists of the ghrelin receptor (GHS-R1a) are widely considered to offer utility as antiobesity agents by lowering the set-point for hunger between meals. We identified an acylurea series of ghrelin modulators from high throughput screening and optimized binding affinity through structure-activity relationship studies. Furthermore, we identified specific substructural changes, which switched partial agonist activity to inverse agonist activity, and optimized physicochemical and DMPK properties to afford the non-CNS penetrant inverse agonist 22 (AZ-GHS-22) and the CNS penetrant inverse agonist 38 (AZ-GHS-38).

View Article and Find Full Text PDF

At AstraZeneca a focus on hypothesis-driven design and the formation of drug design teams has placed a greater emphasis on collaboration in the drug discovery process. We have created a novel software tool based on the principles of wikis and social networks to facilitate collaborative working, visual planning and incorporation of predictive science to improve design capability. Monitoring the design and make process via the tool enabled the identification of bottlenecks and delays.

View Article and Find Full Text PDF

Inhibition of 11β-HSD1 is an attractive mechanism for the treatment of obesity and other elements of the metabolic syndrome. We report here the discovery of a nicotinic amide derived carboxylic acid class of inhibitors that has good potency, selectivity, and pharmacokinetic characteristics. Compound 11i (AZD4017) is an effective inhibitor of 11β-HSD1 in human adipocytes and exhibits good druglike properties and as a consequence was selected for clinical development.

View Article and Find Full Text PDF

A novel series of DGAT-1 inhibitors was discovered from an oxadiazole amide high throughput screening (HTS) hit. Optimisation of potency and ligand lipophilicity efficiency (LLE) resulted in a carboxylic acid containing clinical candidate 53 (AZD3988), which demonstrated excellent DGAT-1 potency (0.6 nM), good pharmacokinetics and pre-clinical in vivo efficacy that could be rationalised through a PK/PD relationship.

View Article and Find Full Text PDF

Checkpoint kinases CHK1 and CHK2 are activated in response to DNA damage that results in cell cycle arrest, allowing sufficient time for DNA repair. Agents that lead to abrogation of such checkpoints have potential to increase the efficacy of such compounds as chemo- and radiotherapies. Thiophenecarboxamide ureas (TCUs) were identified as inhibitors of CHK1 by high throughput screening.

View Article and Find Full Text PDF

Checkpoint kinase 1 (Chk1, CHEK1) is a Ser/Thr protein kinase that plays a key role in mediating the cellular response to DNA-damage. Synthesis and evaluation of a previously described class of Chk1 inhibitors, triazoloquinolones/triazolones (TZs) is further described herein. Our investigation of structure-activity relationships led to the identification of potent inhibitors 14c, 14h and 16e.

View Article and Find Full Text PDF

Checkpoint Kinase-1 (Chk1, CHK1, CHEK1) is a Ser/Thr protein kinase that mediates cellular responses to DNA-damage. A novel class of Chk1 inhibitors, triazoloquinolones/triazolones (TZ's) was identified by high throughput screening. The optimization of these hits to provide a lead series is described.

View Article and Find Full Text PDF

Deregulation of the cell cycle has long been recognized as an essential driver of tumorigenesis, and agents that selectively target key cell cycle components continue to hold promise as potential therapeutics. We have developed AZD5438, a 4-(1-isopropyl-2-methylimidazol-5-yl)-2-(4-methylsulphonylanilino) pyrimidine, as a potent inhibitor of cyclin-dependent kinase (cdk) 1, 2, and 9 (IC(50), 16, 6, and 20 nmol/L, respectively). In vitro, AZD5438 showed significant antiproliferative activity in human tumor cell lines (IC(50) range, 0.

View Article and Find Full Text PDF

An imidazole series of cyclin-dependent kinase (CDK) inhibitors has been developed. Protein inhibitor structure determination has provided an understanding of the emerging structure activity trends for the imidazole series. The introduction of a methyl sulfone at the aniline terminus led to a more orally bioavailable CDK inhibitor that was progressed into clinical development.

View Article and Find Full Text PDF

Checkpoint kinase-1 (Chk1, CHEK1) is a Ser/Thr protein kinase that mediates the cellular response to DNA-damage. A novel class of 2-ureido thiophene carboxamide urea (TCU) Chk1 inhibitors is described. Inhibitors in this chemotype were optimized for cellular potency and selectivity over Cdk1.

View Article and Find Full Text PDF

The synthesis and directed dihydroxylation of a range of cyclic alkenes was investigated. Both homoallylic alcohols and homoallylic trihaloacetamides were found to be efficient directing groups, giving rise to good to excellent levels of remote asymmetric induction with OsO4-TMEDA. Interestingly, in all cases examined, trifluoroacetamides were found to be superior to trichloroacetamides as directing groups and an argument is presented which rationalises this observation.

View Article and Find Full Text PDF

Solid-phase dendrimer chemistry using a symmetrical 1 --> 3 C-branched isocyanate monomer was used to prepare radiation-grafted polymers with enhanced loading. After evaluation of the physical and chemical properties of these new high-loading supports, they were tested in the multiple parallel synthesis of hydantoins.

View Article and Find Full Text PDF

The oxidation of a range of cyclic allylic alcohols and amides with OsO4/TMEDA is presented. Under these conditions, hydrogen bonding control leads to the (contrasteric) formation of the syn isomer in almost every example that was examined. Evidence for the bidentate binding of TMEDA to OsO4 is presented and a plausible mechanism described.

View Article and Find Full Text PDF