Activation of AMP-activated protein kinase (AMPK) in endothelial cells regulates energy homeostasis, stress protection and angiogenesis, but the underlying mechanisms are incompletely understood. Using a label-free phosphoproteomic analysis, we identified glutamine:fructose-6-phosphate amidotransferase 1 (GFAT1) as an AMPK substrate. GFAT1 is the rate-limiting enzyme in the hexosamine biosynthesis pathway (HBP) and as such controls the modification of proteins by -linked β--acetylglucosamine (-GlcNAc).
View Article and Find Full Text PDFBackground: Cyclin-dependent protein kinase-5 (CDK5) is an unusual member of the CDK family as it is not cell cycle regulated. However many of its substrates have roles in cell growth and oncogenesis, raising the possibility that CDK5 modulation could have therapeutic benefit. In order to establish whether changes in CDK5 activity are associated with oncogenesis one could quantify phosphorylation of CDK5 targets in disease tissue in comparison to appropriate controls.
View Article and Find Full Text PDFPCTAIRE-1 [also known as cyclin-dependent kinase 16 (CDK16)] is implicated in various physiological processes such as neurite outgrowth and vesicle trafficking; however, its molecular regulation and downstream targets are largely unknown. Cyclin Y has recently been identified as a key interacting/activating cyclin for PCTAIRE-1; however, the molecular mechanism by which it activates PCTAIRE-1 is undefined. In the present study, we initially performed protein sequence analysis and identified two candidate phosphorylation sites (Ser(12) and Ser(336)) on cyclin Y that might be catalysed by PCTAIRE-1.
View Article and Find Full Text PDFIn myeloid cells, the mRNA-destabilizing protein tristetraprolin (TTP) is induced and extensively phosphorylated in response to LPS. To investigate the role of two specific phosphorylations, at serines 52 and 178, we created a mouse strain in which those residues were replaced by nonphosphorylatable alanine residues. The mutant form of TTP was constitutively degraded by the proteasome and therefore expressed at low levels, yet it functioned as a potent mRNA destabilizing factor and inhibitor of the expression of many inflammatory mediators.
View Article and Find Full Text PDFScaffold attachment factor A (SAF-A), also called heterogenous nuclear ribonuclear protein U (hnRNP-U), is phosphorylated on serine 59 by the DNA-dependent protein kinase (DNA-PK) in response to DNA damage. Since SAF-A, DNA-PK catalytic subunit (DNA-PKcs), and protein phosphatase 6 (PP6), which interacts with DNA-PKcs, have all been shown to have roles in mitosis, we asked whether DNA-PKcs phosphorylates SAF-A in mitosis. We show that SAF-A is phosphorylated on serine 59 in mitosis, that phosphorylation requires polo-like kinase 1 (PLK1) rather than DNA-PKcs, that SAF-A interacts with PLK1 in nocodazole-treated cells, and that serine 59 is dephosphorylated by protein phosphatase 2A (PP2A) in mitosis.
View Article and Find Full Text PDFPolyubiquitin chains regulate diverse cellular processes through the ability of ubiquitin to form chains of eight different linkage types. Although detected in yeast and mammals, little is known about K29-linked polyubiquitin. Here we report the generation of K29 chains in vitro using a ubiquitin chain-editing complex consisting of the HECT E3 ligase UBE3C and the deubiquitinase vOTU.
View Article and Find Full Text PDFUbiquitylation regulates a multitude of biological processes and this versatility stems from the ability of ubiquitin (Ub) to form topologically different polymers of eight different linkage types. Whereas some linkages have been studied in detail, other linkage types including Lys33-linked polyUb are poorly understood. In the present study, we identify an enzymatic system for the large-scale assembly of Lys33 chains by combining the HECT (homologous to the E6-AP C-terminus) E3 ligase AREL1 (apoptosis-resistant E3 Ub protein ligase 1) with linkage selective deubiquitinases (DUBs).
View Article and Find Full Text PDFAMP-activated protein kinase (AMPK) is a key cellular energy sensor and regulator of metabolic homeostasis. Although it is best known for its effects on carbohydrate and lipid metabolism, AMPK is implicated in diverse cellular processes, including mitochondrial biogenesis, autophagy, and cell growth and proliferation. To further our understanding of energy homeostasis through AMPK-dependent processes, the design and application of approaches to identify and characterise novel AMPK substrates are invaluable.
View Article and Find Full Text PDFMutations in the tricarboxylic acid (TCA) cycle enzyme fumarate hydratase (FH) are associated with a highly malignant form of renal cancer. We combined analytical chemistry and metabolic computational modelling to investigate the metabolic implications of FH loss in immortalized and primary mouse kidney cells. Here, we show that the accumulation of fumarate caused by the inactivation of FH leads to oxidative stress that is mediated by the formation of succinicGSH, a covalent adduct between fumarate and glutathione.
View Article and Find Full Text PDFWe report the successful expression and purification of functional human muscle glycogen synthase (GYS1) in complex with human glycogenin-1 (GN1). Stoichiometric GYS1:GN1 complex was produced by co-expression of GYS1 and GN1 using a bicistronic pFastBac™-Dual expression vector, followed by affinity purification and subsequent size-exclusion chromatography. Mass spectrometry analysis identified that GYS1 is phosphorylated at several well-characterised and uncharacterised Ser/Thr residues.
View Article and Find Full Text PDFCellular senescence is a stable proliferation arrest that suppresses tumorigenesis. Cellular senescence and associated tumor suppression depend on control of chromatin. Histone chaperone HIRA deposits variant histone H3.
View Article and Find Full Text PDFSalt-inducible kinase 2 (SIK2) is an AMP-activated protein kinase (AMPK) related kinase abundantly expressed in adipose tissue. Our aim was to identify molecular targets and functions of SIK2 in adipocytes, and to address the role of PKA-mediated phosphorylation of SIK2 on Ser358. Modulation of SIK2 in adipocytes resulted in altered phosphorylation of CREB-regulated transcription co-activator 2 (CRTC2), CRTC3 and class IIa histone deacetylase 4 (HDAC4).
View Article and Find Full Text PDFDeubiquitylases (DUBs) are key regulators of the ubiquitin system which cleave ubiquitin moieties from proteins and polyubiquitin chains. Several DUBs have been implicated in various diseases and are attractive drug targets. We have developed a sensitive and fast assay to quantify in vitro DUB enzyme activity using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry.
View Article and Find Full Text PDFThe chromosomal passenger complex (CPC) is a key regulator of eukaryotic cell division, consisting of the protein kinase Aurora B/Ipl1 in association with its activator (INCENP/Sli15) and two additional proteins (Survivin/Bir1 and Borealin/Nbl1). Here we have identified multiple sites of CPC autophosphorylation on yeast Sli15 that are located within its central microtubule-binding domain and examined the functional significance of their phosphorylation by Ipl1 through mutation of these sites, either to non-phosphorylatable alanine (sli15-20A) or to acidic residues to mimic constitutive phosphorylation (sli15-20D). Both mutant sli15 alleles confer chromosome instability, but this is mediated neither by changes in the capacity of Sli15 to activate Ipl1 kinase nor by decreased efficiency of chromosome biorientation, a key process in cell division that requires CPC function.
View Article and Find Full Text PDFBackground: Cucurbitacins are a class of triterpenoid natural compounds with potent bioactivities that led to their use as traditional remedies, and which continue to attract considerable attention as chemical biology tools and potential therapeutics. One obvious target is the actin-cytoskeleton; treatment with cucurbitacins results in cytoskeletal rearrangements that impact upon motility and cell morphology.
Findings: Cucurbitacin reacted with protein cysteine thiols as well as dithiothreitol, and we propose that the cucurbitacin mechanism of action is through broad protein thiol modifications that could result in inhibition of numerous protein targets.
Activation of PKR (double-stranded-RNA-dependent protein kinase) by DNA plasmids decreases translation, and limits the amount of recombinant protein produced by transiently transfected HEK (human embryonic kidney)-293 cells. Co-expression with Ebola virus VP35 (virus protein 35), which blocked plasmid activation of PKR, substantially increased production of recombinant TPL-2 (tumour progression locus 2)-ABIN-2 [A20-binding inhibitor of NF-κB (nuclear factor κB) 2]-NF-κB1 p105 complex. VP35 also increased expression of other co-transfected proteins, suggesting that VP35 could be employed generally to boost recombinant protein production by HEK-293 cells.
View Article and Find Full Text PDFThe mitogen-activated protein (MAP) kinase extracellular signal-regulated kinase 5 (ERK5) plays a crucial role in cell proliferation, regulating gene transcription. ERK5 has a unique C-terminal tail which contains a transcriptional activation domain, and activates transcription by phosphorylating transcription factors and acting itself as a transcriptional coactivator. However, the molecular mechanisms that regulate its nucleocytoplasmatic traffic are unknown.
View Article and Find Full Text PDFSalt-inducible kinase (SIK) 3 is a virtually unstudied, ubiquitously expressed serine/threonine kinase, belonging to the AMP-activated protein kinase (AMPK)-related family of kinases, all of which are regulated by LKB1 phosphorylation of a threonine residue in their activation (T)-loops. Findings in adrenal cells have revealed a role for cAMP in the regulation of SIK1, and recent findings suggest that insulin can regulate an SIK isoform in Drosophila. As cAMP has important functions in adipocytes, mainly in the regulation of lipolysis, we have evaluated a potential role for cAMP, as well as for insulin, in the regulation of SIK3 in these cells.
View Article and Find Full Text PDFSIK2 (salt-inducible kinase 2) is a member of the AMPK (AMP-activated protein kinase) family of kinases and is highly expressed in adipocytes. We investigated the regulation of SIK2 in adipocytes in response to cellular stimuli with relevance for adipocyte function and/or AMPK signalling. None of the treatments, including insulin, cAMP inducers or AICAR (5-amino-4-imidazolecarboxamide riboside), affected SIK2 activity towards peptide or protein substrates in vitro.
View Article and Find Full Text PDFBackground: SCAR/WAVE is a principal regulator of pseudopod growth in crawling cells. It exists in a stable pentameric complex, which is regulated at multiple levels that are only beginning to be understood. SCAR/WAVE is phosphorylated at multiple sites, but how this affects its biological activity is unclear.
View Article and Find Full Text PDFPABP1 [poly(A)-binding protein 1] is a central regulator of mRNA translation and stability and is required for miRNA (microRNA)-mediated regulation and nonsense-mediated decay. Numerous protein, as well as RNA, interactions underlie its multi-functional nature; however, it is unclear how its different activities are co-ordinated, since many partners interact via overlapping binding sites. In the present study, we show that human PABP1 is subject to elaborate post-translational modification, identifying 14 modifications located throughout the functional domains, all but one of which are conserved in mouse.
View Article and Find Full Text PDFADAR2 catalyses the deamination of adenosine to inosine at the GluR2 Q/R site in the pre-mRNA encoding the critical subunit of AMPA receptors. Among ADAR2 substrates this is the vital one as editing at this position is indispensable for normal brain function. However, the regulation of ADAR2 post-translationally remains to be elucidated.
View Article and Find Full Text PDF