The unmet clinical need for accurate point-of-care (POC) diagnostic tests able to discriminate bacterial from viral infection demands a solution that can be used both within healthcare settings and in the field, and that can also stem the tide of antimicrobial resistance. Our approach to solve this problem combine the use of host gene signatures with our Lab-on-a-Chip (LoC) technology enabling low-cost POC expression analysis to detect Infectious Disease. Transcriptomics have been extensively investigated as a potential tool to be implemented in the diagnosis of infectious disease.
View Article and Find Full Text PDFhas widely evolved resistance to the most commonly used class of antifungal chemicals, the azoles. Current methods for identifying azole resistance are time-consuming and depend on specialized laboratories. There is an urgent need for rapid detection of these emerging pathogens at point-of-care to provide the appropriate treatment in the clinic and to improve management of environmental reservoirs to mitigate the spread of antifungal resistance.
View Article and Find Full Text PDFBreast cancer (BC) is a common cancer in women worldwide. Despite advances in treatment, up to 30% of women eventually relapse and die of metastatic breast cancer. Liquid biopsy analysis of circulating cell-free DNA fragments in the patients' blood can monitor clonality and evolving mutations as a surrogate for tumour biopsy.
View Article and Find Full Text PDFIEEE Trans Biomed Circuits Syst
April 2020
An ultra-high frame rate and high spatial resolution ion-sensing Lab-on-Chip platform using a 128 × 128 CMOS ISFET array is presented. Current mode operation is employed to facilitate high-speed operation, with the ISFET sensors biased in the triode region to provide a linear response. Sensing pixels include a reset switch to allow in-pixel calibration for non-idealities such as offset, trapped charge and drift by periodically resetting the floating gate of the ISFET sensor.
View Article and Find Full Text PDFEarly and accurate diagnosis of malaria and drug-resistance is essential to effective disease management. Available rapid malaria diagnostic tests present limitations in analytical sensitivity, drug-resistance testing and/or quantification. Conversely, diagnostic methods based on nucleic acid amplification stepped forwards owing to their high sensitivity, specificity and robustness.
View Article and Find Full Text PDFIEEE Trans Biomed Circuits Syst
October 2018
This paper presents a large-scale CMOS chemical-sensing array operating in current mode for real-time ion imaging and detection of DNA amplification. We show that the current-mode operation of ion-sensitive field-effect transistors in velocity saturation devices can be exploited to achieve an almost perfect linearity in their input-output characteristics (pH-current), which are aligned with the continuous scaling trend of transistors in CMOS. The array is implemented in a 0.
View Article and Find Full Text PDF