This study introduces a novel iterative Bragg peak removal with automatic intensity correction (IBR-AIC) methodology for X-ray absorption spectroscopy (XAS), specifically addressing the challenge of Bragg peak interference in the analysis of crystalline materials. The approach integrates experimental adjustments and sophisticated post-processing, including an iterative algorithm for robust calculation of the scaling factor of the absorption coefficients and efficient elimination of the Bragg peaks, a common obstacle in accurately interpreting XAS data, particularly in crystalline samples. The method was thoroughly evaluated on dilute catalysts and thin films, with fluorescence mode and large-angle rotation.
View Article and Find Full Text PDFThe development of new catalyst materials for energy-efficient chemical synthesis is critical as over 80% of industrial processes rely on catalysts, with many of the most energy-intensive processes specifically using heterogeneous catalysis. Catalytic performance is a complex interplay of phenomena involving temperature, pressure, gas composition, surface composition, and structure over multiple length and time scales. In response to this complexity, the integrated approach to heterogeneous dilute alloy catalysis reviewed here brings together materials synthesis, mechanistic surface chemistry, reaction kinetics, in situ and operando characterization, and theoretical calculations in a coordinated effort to develop design principles to predict and improve catalytic selectivity.
View Article and Find Full Text PDFPlatinum is the primary catalyst for many chemical reactions in the field of heterogeneous catalysis. However, platinum is both expensive and rare. Therefore, it is advantageous to combine Pt with another metal to reduce cost while also enhancing stability.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2021
Size-selected clusters are important model catalysts because of their narrow size and compositional distributions, as well as enhanced activity and selectivity in many reactions. Still, their structure-activity relationships are, in general, elusive. The main reason is the difficulty in identifying and quantitatively characterizing the catalytic active site in the clusters when it is confined within subnanometric dimensions and under the continuous structural changes the clusters can undergo in reaction conditions.
View Article and Find Full Text PDFSupervised machine learning-enabled mapping of the X-ray absorption near edge structure (XANES) spectra to local structural descriptors offers new methods for understanding the structure and function of working nanocatalysts. We briefly summarize a status of XANES analysis approaches by supervised machine learning methods. We present an example of an autoencoder-based, unsupervised machine learning approach for latent representation learning of XANES spectra.
View Article and Find Full Text PDFX-ray absorption spectroscopy is a common method for probing the local structure of nanocatalysts. One portion of the X-ray absorption spectrum, the X-ray absorption near edge structure (XANES) is a useful alternative to the commonly used extended X-ray absorption fine structure (EXAFS) for probing three-dimensional geometry around each type of atomic species, especially in those cases when the EXAFS data quality is limited by harsh reaction conditions and low metal loading. A methodology for quantitative determination of bimetallic architectures from their XANES spectra is currently lacking.
View Article and Find Full Text PDFDilute alloys are promising materials for sustainable chemical production; however, their composition and structure affect their performance. Herein, a comprehensive study of the effects of pretreatment conditions on the materials properties of PdAu nanoparticles partially embedded in porous silica is related to the activity for catalytic hydrogenation of 1-hexyne to 1-hexene. A combination of in situ characterization and theoretical calculations provide evidence that changes in palladium surface content are induced by treatment in oxygen, hydrogen and carbon monoxide at various temperatures.
View Article and Find Full Text PDFUnderstanding the origins of enhanced reactivity of supported, subnanometer in size, metal oxide clusters is challenging due to the scarcity of methods capable to extract atomic-level information from the experimental data. Due to both the sensitivity of X-ray absorption near edge structure (XANES) spectroscopy to the local geometry around metal ions and reliability of theoretical spectroscopy codes for modeling XANES spectra, supervised machine learning approach has become a powerful tool for extracting structural information from the experimental spectra. Here, we present the application of this method to grazing incidence XANES spectra of size-selective Cu oxide clusters on flat support, measured in operando conditions of the methanation reaction.
View Article and Find Full Text PDFIn this report, we examine the structure of bimetallic nanomaterials prepared by an electrochemical approach known as hydride-terminated (HT) electrodeposition. It has been shown previously that this method can lead to deposition of a single Pt monolayer on bulk-phase Au surfaces. Specifically, under appropriate electrochemical conditions and using a solution containing PtCl, a monolayer of Pt atoms electrodeposits onto bulk-phase Au immediately followed by a monolayer of H atoms.
View Article and Find Full Text PDF