Publications by authors named "Nicholas Makumi"

The primary focus of all sample surveys is on providing point estimates for the parameters of primary interest, and also estimating the variance associated with those point estimates to quantify the uncertainty. Larger samples and important measurement tools can help to reduce the point estimates' uncertainty. Numerous effective stratification criteria may be used in survey to reduce variance within stratum.

View Article and Find Full Text PDF

In this paper, we introduced a novel general two-parameter statistical distribution which can be presented as a mix of both exponential and gamma distributions. Some statistical properties of the general model were derived mathematically. Many estimation methods studied the estimation of the proposed model parameters.

View Article and Find Full Text PDF

During the course of this research, we came up with a brand new distribution that is superior; we then presented and analysed the mathematical properties of this distribution; finally, we assessed its fuzzy reliability function. Because the novel distribution provides a number of advantages, like the reality that its cumulative distribution function and probability density function both have a closed form, it is very useful in a wide range of disciplines that are related to data science. One of these fields is machine learning, which is a sub field of data science.

View Article and Find Full Text PDF

The bivariate Poisson exponential-exponential distribution is an important lifetime distribution in medical data analysis. In this article, the conditionals, probability mass function (pmf), Poisson exponential and probability density function (pdf), and exponential distribution are used for creating bivariate distribution which is called bivariate Poisson exponential-exponential conditional (BPEEC) distribution. Some properties of the BPEEC model are obtained such as the normalized constant, conditional densities, regression functions, and product moment.

View Article and Find Full Text PDF