Salmon fillet was analyzed via hand-held optical devices: fluorescence (@340 nm) and absorption spectroscopy across the visible and near-infrared (NIR) range (400-1900 nm). Spectroscopic measurements were benchmarked with nucleotide assays and potentiometry in an exploratory set of experiments over 11 days, with changes to spectral profiles noted. A second enlarged spectroscopic data set, over a 17 day period, was then acquired, and fillet freshness was classified ±1 day via four machine learning (ML) algorithms: linear discriminant analysis, Gaussian naïve, weighted -nearest neighbors, and an ensemble bagged tree method.
View Article and Find Full Text PDFSeafood mislabeling rates of approximately 20% have been reported globally. Traditional methods for fish species identification, such as DNA analysis and polymerase chain reaction (PCR), are expensive and time-consuming, and require skilled technicians and specialized equipment. The combination of spectroscopy and machine learning presents a promising approach to overcome these challenges.
View Article and Find Full Text PDFThis study is directed towards developing a fast, non-destructive, and easy-to-use handheld multimode spectroscopic system for fish quality assessment. We apply data fusion of visible near infra-red (VIS-NIR) and short wave infra-red (SWIR) reflectance and fluorescence (FL) spectroscopy data features to classify fish from fresh to spoiled condition. Farmed Atlantic and wild coho and chinook salmon and sablefish fillets were measured.
View Article and Find Full Text PDFFood safety and foodborne diseases are significant global public health concerns. Meat and poultry carcasses can be contaminated by pathogens like E. coli and salmonella, by contact with animal fecal matter and ingesta during slaughter and processing.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2021
Currently, there is no single technology capable of assessing all the multitude of factors associated with peripheral complications of diabetic neuropathy. In this work, a multimodal wound detection system is proposed to help facilitate in-home examinations, utilizing a combination of thermal, multi-spectral 3D imaging modalities. The proposed system is capable of the 3D surface rendering of the foot and would overlay thermal, blood oxygenation, besides other skin health information to aid with foot health monitoring.
View Article and Find Full Text PDFContamination inspection is an ongoing concern for food distributors, restaurant owners, caterers, and others who handle food. Food contamination must be prevented, and zero tolerance legal requirements and damage to the reputation of institutions or restaurants can be very costly. This paper introduces a new handheld fluorescence-based imaging system that can rapidly detect, disinfect, and document invisible organic residues and biofilms which may host pathogens.
View Article and Find Full Text PDFAdvances in image-guided therapy enable physicians to obtain real-time information on neurological disorders such as brain tumors to improve resection accuracy. Image guidance data include the location, size, shape, type, and extent of tumors. Recent technological advances in neurophotonic engineering have enabled the development of techniques for minimally invasive neurosurgery.
View Article and Find Full Text PDFChanges in the pattern and distribution of both melanocytes (pigment producing) and vasculature (hemoglobin containing) are important in distinguishing melanocytic proliferations. The ability to accurately measure melanin distribution at different depths and to distinguish it from hemoglobin is clearly important when assessing pigmented lesions (benign versus malignant). We have developed a multimode hyperspectral dermoscope (SkinSpect™) able to more accurately image both melanin and hemoglobin distribution in skin.
View Article and Find Full Text PDFAttempts to understand the changes in the structure and physiology of human skin abnormalities by non-invasive optical imaging are aided by spectroscopic methods that quantify, at the molecular level, variations in tissue oxygenation and melanin distribution. However, current commercial and research systems to map hemoglobin and melanin do not correlate well with pathology for pigmented lesions or darker skin. We developed a multimode dermoscope that combines polarization and hyperspectral imaging with an efficient analytical model to map the distribution of specific skin bio-molecules.
View Article and Find Full Text PDFIn the context of clinical trials, calibration protocols for optical instruments that ensure measurement accuracy and the ability to carry out meaningful comparisons of data acquired from multiple instruments are required. A series of calibration standards and procedures are presented to assess technical feasibility of optical devices for cervical precancer detection. Measurements of positive and negative standards, and tissue are made with two generations of research grade spectrometers.
View Article and Find Full Text PDFA spectrally and temporally programmable light engine can create any spectral profile for hyperspectral, fluorescence, or principal-component imaging or with medical photonics devices employing spectroscopy, microscopy, and endoscopy. Multispectral imaging feasibility was demonstrated by capturing nine images at wavelengths from 450 to 650 mm (25-nm FWHM) with a CCD-camera-equipped bronchoscope coupled to the light engine. Selected wavelength regions were combined to produce a color endoscopy image.
View Article and Find Full Text PDF