Impaired clearance of the byproducts of aging and neurologic disease from the brain exacerbates disease progression and severity. We have developed a noninvasive, low intensity transcranial focused ultrasound protocol that facilitates the removal of pathogenic substances from the cerebrospinal fluid (CSF) and the brain interstitium. This protocol clears neurofilament light chain (NfL) - an aging byproduct - in aged mice and clears red blood cells (RBCs) from the central nervous system in two mouse models of hemorrhagic brain injury.
View Article and Find Full Text PDFPurpose: Data on lines of therapy (LOTs) for cancer treatment are important for clinical oncology research, but LOTs are not explicitly recorded in electronic health records (EHRs). We present an efficient approach for clinical data abstraction and a flexible algorithm to derive LOTs from EHR-based medication data on patients with glioblastoma multiforme (GBM).
Methods: Nonclinicians were trained to abstract the diagnosis of GBM from EHRs, and their accuracy was compared with abstraction performed by clinicians.
Objective: While there are currently approaches to handle unstructured clinical data, such as manual abstraction and structured proxy variables, these methods may be time-consuming, not scalable, and imprecise. This article aims to determine whether selective prediction, which gives a model the option to abstain from generating a prediction, can improve the accuracy and efficiency of unstructured clinical data abstraction.
Materials And Methods: We trained selective classifiers (logistic regression, random forest, support vector machine) to extract 5 variables from clinical notes: depression (n = 1563), glioblastoma (GBM, n = 659), rectal adenocarcinoma (DRA, n = 601), and abdominoperineal resection (APR, n = 601) and low anterior resection (LAR, n = 601) of adenocarcinoma.
Intrathecal drug delivery is routinely used in the treatment and prophylaxis of varied central nervous system conditions, as doing so allows drugs to directly bypass the blood-brain barrier. However, the utility of this route of administration is limited by poor brain and spinal cord parenchymal drug uptake from the cerebrospinal fluid. We demonstrate that a simple noninvasive transcranial ultrasound protocol can significantly increase influx of cerebrospinal fluid into the perivascular spaces of the brain, to enhance the uptake of intrathecally administered drugs.
View Article and Find Full Text PDFOncolytic viruses (OVs) are a new class of cancer therapeutics. This review was undertaken to provide insight into the current landscape of OV clinical trials. A PubMed search identified 119 papers from 2000 to 2020 with 97 studies reporting data on 3233 patients.
View Article and Find Full Text PDF