Publications by authors named "Nicholas M Matsumoto"

Few synthetic hydrogels can mimic both the viscoelasticity and supramolecular fibrous structure found in the naturally occurring extracellular matrix (ECM). Furthermore, the ability to control the viscoelasticity of fibrous supramolecular hydrogel networks to influence cell culture remains a challenge. Here, we show that modular mixing of supramolecular architectures with slow and fast exchange dynamics can provide a suitable environment for multiple cell types and influence cellular aggregation.

View Article and Find Full Text PDF
Article Synopsis
  • * The study focuses on binary hydrogels made from two specific supramolecular compounds (BTA and BTA-PEG-BTA) and reveals that they form very different networks that lead to unique viscoelastic properties.
  • * Mixing these compounds shows a complex relationship between their compositions affecting mechanical properties, with experimental and simulation results suggesting a way to optimize and design hydrogels with tailored features.
View Article and Find Full Text PDF

Poly(ethylene glycols) (PEGs) with protein-reactive end-groups are widely utilized in bioconjugation reactions. Herein, we describe the use of ring-opening metathesis polymerization (ROMP) to synthesize unsaturated protein-reactive PEG analogs. These ROMP PEGs (rPEGs) contained terminal aldehyde functionality and ranged in molecular weight from 6 to 20 kDa.

View Article and Find Full Text PDF

In biology, polymorphism is a well-known phenomenon by which a discrete biomacromolecule can adopt multiple specific conformations in response to its environment. The controlled incorporation of polymorphism into noncovalent aqueous assemblies of synthetic small molecules is an important step toward the development of bioinspired responsive materials. Herein, we report on a family of carboxylic acid functionalized water-soluble benzene-1,3,5-tricarboxamides (BTAs) that self-assemble in water to form one-dimensional fibers, membranes, and hollow nanotubes.

View Article and Find Full Text PDF

Numerous self-assembling molecules have been synthesized aiming at mimicking both the structural and dynamic properties found in living systems. Here we show the application of hydrogen/deuterium exchange (HDX) mass spectrometry (MS) to unravel the nanoscale organization and the structural dynamics of synthetic supramolecular polymers in water. We select benzene-1,3,5-tricarboxamide (BTA) derivatives that self-assemble in HO to illustrate the strength of this technique for supramolecular polymers.

View Article and Find Full Text PDF

The formation of multicomponent and bioactive supramolecular polymers is a promising strategy for the formation of biomaterials that match the dynamic and responsive nature of biological systems. In order to fully realize the potential of this strategy, knowledge of the location and behavior of bioactive components within the system is crucial. By employing synthetic strategies to create multifunctional monomers, coupled with FRET and STORM techniques, we have investigated the formation and behavior of a bioactive and multicomponent supramolecular polymer.

View Article and Find Full Text PDF

Multiply responsive protein nanoparticles are interesting for a variety of applications. Herein, we describe the synthesis of a vault nanoparticle that responds to both temperature and pH. Specifically, poly(-isopropylacrylamide--acrylic acid) with a pyridyl disulfide end group was prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization.

View Article and Find Full Text PDF

The covalent conjugation of bovine serum albumin (BSA) to disulfide cross-linked polymeric nanogels is reported. Polymeric nanogel precursors were synthesized via a reversible addition-fragmentation chain transfer (RAFT) random copolymerization of poly(ethylene glycol) methyl ether methacrylate (PEGMA) and pyridyl disulfide methacrylate (PDSMA). Reaction of the p(PEGMA--PDSMA) with dithiothreitol resulted in the formation of nanogels.

View Article and Find Full Text PDF

Synthetic modification of a recombinant protein cage called a vault with stimuli-responsive smart polymers provides access to a new class of biohybrid materials; the polymer nanocapsules retain the structure of the protein cage and exhibit the responsive nature of the polymer. Vaults are naturally occurring ubiquitous ribonucleoprotein particles 41 × 41 × 72.5 nm composed of a protein shell enclosing multiple copies of two proteins and multiple copies of one or more small untranslated RNAs.

View Article and Find Full Text PDF

An efficient method to synthesize telechelic, bio-reactive polymers is described. Homotelechelic polymers were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization in one step by employing bifunctional chain transfer agents (CTAs). A bis-carboxylic acid CTA was coupled to -BOC-aminooxy ethanol or pyridyl disulfide ethanol resulting in a bis--BOC-aminooxy CTA and a bis-pyridyl disulfide CTA, respectively.

View Article and Find Full Text PDF

Ionomers containing sodium 4-styrene sulfonate (4SS) and poly(ethylene glycol) methyl ether acrylate (PEGA) were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. The polymerization was mediated by 1-phenylethyl dithiobenzoate chain transfer agent in a dimethylformamide/water solvent system. Well-defined copolymers of pPEGA-co-4SS were produced with molecular weights ranging from 10 kDa to 40 kDa and polydispersity indices (PDIs) of 1.

View Article and Find Full Text PDF

Herein we report the synthesis of vinyl sulfone end functionalized PEGylated polymers by reversible addition-fragmentation chain transfer (RAFT) polymerization for conjugation to proteins. Poly(ethylene glycol) methyl ether acrylate (PEGA) was polymerized in the presence of 1-phenylethyl dithiobenzoate with 2,2'-azobis(2-methylpropionitrile) as the initiator to generate well-defined polyPEGAs with number-average molecular weights (M(n)) by gel permeation chromatography (GPC) of 6.7 kDa, 11.

View Article and Find Full Text PDF