Oncolytic virotherapy (OVT) is a promising form of cancer treatment that uses genetically engineered viruses to replicate within cancer cells and trigger anti-tumor immune response. In addition to killing cancer cells, oncolytic viruses can also remodel the tumor microenvironment and stimulate a long-term anti-tumor immune response. Despite achieving positive results in cellular and organismal studies, there are currently only a few approved oncolytic viruses for clinical use.
View Article and Find Full Text PDFγδ T cells, a specialized subset of T lymphocytes, have garnered significant attention within the realm of cancer immunotherapy. Operating at the nexus between adaptive and innate immunological paradigms, these cells showcase a profound tumor discernment repertoire, hinting at novel immunotherapeutic strategies. Significantly, these cells possess the capability to directly identify and eliminate tumor cells without reliance on HLA-antigen presentation.
View Article and Find Full Text PDFCD19-targeted chimeric antigen receptor-modified T (CD19 CAR-T) cell therapy has been demonstrated as one of the most promising therapeutic strategies for treating B cell malignancies. However, it has shown limited treatment efficacy for diffuse large B cell lymphoma (DLBCL). This is, in part, due to the tumor heterogeneity and the hostile tumor microenvironment.
View Article and Find Full Text PDFBackground: Triple-negative breast cancer (TNBC) corresponds to approximately 20% of all breast tumors, with a high propensity for metastasis and a poor prognosis. Because TNBC displays a high mutational load compared with other breast cancer types, a neoantigen-based immunotherapy strategy could be effective. One major bottleneck in the development of a neoantigen-based vaccine for TNBC is the selection of the best targets, that is, tumor-specific neoantigens which are presented at the surface of tumor cells and capable of eliciting robust immune responses.
View Article and Find Full Text PDFChimeric antigen receptor T cell immunotherapy has achieved promising therapeutic effects in the treatment of hematological malignancies. However, there are still many obstacles, including on-target off-tumor antigen expression, that prevent successful application to solid tumors. We designed a tumor microenvironment (TME) regulated system chimeric antigen receptor T (MRS.
View Article and Find Full Text PDFCancer immunotherapy (CIT) has emerged as an exciting new pillar of cancer treatment. Although benefits have been achieved in individual patients, the overall response rate is still not satisfactory. To address this, an ideal preclinical animal model for evaluating CIT is urgently needed.
View Article and Find Full Text PDFGlioblastoma (GBM) is the most common primary malignant tumor in the brain, accounting for 51.4% of all primary brain tumors. GBM has a highly immunosuppressive tumor microenvironment (TME) and, as such, responses to immunotherapeutic strategies are poor.
View Article and Find Full Text PDFRAS mutations occur in approximately 20% of all cancers and given their clonality, key role as driver mutation, association with poor prognosis and undruggability, they represent attractive targets for immunotherapy. We have identified immunogenic peptides derived from codon 12 mutant RAS (G12A, G12C, G12D, G12R, G12S and G12V), which bind to HLA-A*02:01 and HLA-A*03:01 and elicit strong peptide-specific CD8+ T cell responses, indicating that there is an effective CD8+ T-cell repertoire against these mutant RAS-derived peptides that can be mobilized. Alterations in anchor residues of these peptides enhanced their binding affinity to HLA-A*02:01 molecules and allowed generation of CD8+ T cells that responded to target cells pulsed with the anchor-modified and also with the original peptide.
View Article and Find Full Text PDFMHC class II expression is a hallmark of professional antigen-presenting cells and key to the induction of CD4+ T helper cells. We found that these molecules are ectopically expressed on tumor cells in a large proportion of patients with pancreatic ductal adenocarcinoma (PDAC) and on several PDAC cell lines. In contrast to the previous reports that tumoral expression of MHC-II in melanoma enabled tumor cells to evade immunosurveillance, the expression of MHC-II on PDAC cells neither protected cancer cells from Fas-mediated cell death nor caused T-cell suppression by engagement with its ligand LAG-3 on activated T-cells.
View Article and Find Full Text PDFImmunotherapies, such as immune checkpoint inhibitors (ICIs) and chimeric antigen receptor-T (CAR-T) cells, are only efficient in a small proportion of tumor patients. One of the major reasons for this is the lack of immune cell infiltration and activation in the tumor microenvironment (TME). Recent research reported that abundant bystander CD8 T cells targeting viral antigens exist in tumor infiltrates and that virus-specific memory T cells could be recalled to kill tumor cells.
View Article and Find Full Text PDFBackground: Pancreatic cancer remains one of the most lethal cancers and is refractory to immunotherapeutic interventions. Oncolytic viruses are a promising new treatment option, but current platforms demonstrate limited efficacy, especially for inaccessible and metastatic cancers that require systemically deliverable therapies. We recently described an oncolytic vaccinia virus (VV), VVLΔTKΔN1L, which has potent antitumor activity, and a regime to enhance intravenous delivery of VV by pharmacological inhibition of pharmacological inhibition of PI3 Kinase δ (PI3Kδ) to prevent virus uptake by macrophages.
View Article and Find Full Text PDFPurpose: To investigate whether CEACAM7 represents a novel therapeutic target for treating pancreatic ductal adenocarcinoma (PDAC) and to generate CEACAM7-targeting CAR T cells to test this hypothesis.
Experimental Design: We identified CEACAM7 (CGM2), a member of the CEA family of proteins with expression restricted to the colon and pancreas, as a potential CAR T-cell target for PDAC. We probed a panel of PDAC tumor sections as well as patient-derived PDAC cell cultures for CEACAM7 expression.
Esophageal squamous cell carcinoma (ESCC) is one of the most lethal cancers in China and existing therapies have been unable to significantly improve prognosis. Oncolytic adenoviruses (OAds) are novel promising anti-tumor drugs and have been evaluated in several cancers including ESCC. However, the antitumour efficacy of the first generation OAds (H101) as single agent is limited.
View Article and Find Full Text PDFWidespread mammographic screening programs and improved self-monitoring allow for breast cancer to be detected earlier than ever before. Breast-conserving surgery is a successful treatment for select women. However, up to 40% of women develop local recurrence after surgery despite apparently tumor-free margins.
View Article and Find Full Text PDFSNPnexus is a web-based annotation tool for the analysis and interpretation of both known and novel sequencing variations. Since its last release, SNPnexus has received continual updates to expand the range and depth of annotations provided. SNPnexus has undergone a complete overhaul of the underlying infrastructure to accommodate faster computational times.
View Article and Find Full Text PDFBackground: Local recurrence and remote metastasis are major challenges to overcome in order to improve the survival of patients with cancer after surgery. Oncolytic viruses are a particularly attractive option for prevention of postsurgical disease as they offer a non-toxic treatment option that can directly target residual tumor deposits and beneficially modulate the systemic immune environment that is suppressed post surgery and allows residual disease escape from control. Here, we report that a novel (VV), VVΔTKΔN1L (with deletion of both thymidine kinase (TK) and N1L genes) armed with interleukin 12 (IL-12), can prolong postoperative survival when used as a neoadjuvant treatment in different murine and hamster surgical models of cancer.
View Article and Find Full Text PDFTumor-targeting oncolytic viruses such as vaccinia virus (VV) are attractive cancer therapeutic agents that act through multiple mechanisms to provoke both tumor lysis and anti-tumor immune responses. However, delivery of these agents remains restricted to intra-tumoral administration, which prevents effective targeting of inaccessible and disseminated tumor cells. In the present study we have identified transient pharmacological inhibition of the leukocyte-enriched phosphoinositide 3-kinase δ (PI3Kδ) as a novel mechanism to potentiate intravenous delivery of oncolytic VV to tumors.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFThe adaptive cellular response to low oxygen tensions is mediated by the hypoxia-inducible factors (HIFs), a family of heterodimeric transcription factors composed of HIF-α and HIF-β subunits. Prolonged HIF expression is a key contributor to cellular transformation, tumorigenesis and metastasis. As such, HIF degradation under hypoxic conditions is an essential homeostatic and tumour-suppressive mechanism.
View Article and Find Full Text PDFBroader functional annotation of genetic variation is a valuable means for prioritising phenotypically-important variants in further disease studies and large-scale genotyping projects. We developed SNPnexus to meet this need by assessing the potential significance of known and novel SNPs on the major transcriptome, proteome, regulatory and structural variation models. Since its previous release in 2012, we have made significant improvements to the annotation categories and updated the query and data viewing systems.
View Article and Find Full Text PDFOncolytic viral therapy is a new promising strategy against cancer. Oncolytic viruses (OVs) can replicate in cancer cells but not in normal cells, leading to lysis of the tumor mass. Beside this primary effect, OVs can also stimulate the immune system.
View Article and Find Full Text PDFTGF-β/Activin induces epithelial-to-mesenchymal transition and stemness in pancreatic ductal adenocarcinoma (PDAC). However, the microRNAs (miRNAs) regulated during this response have remained yet undetermined. Here, we show that TGF-β transcriptionally induces MIR100HG lncRNA, containing miR-100, miR-125b and let-7a in its intron, via SMAD2/3.
View Article and Find Full Text PDFThe originally published version of this Article contained errors in Figure 4. In panel b, the square and diamond labels associated with the uppermost survival curve were incorrectly displayed as 'n' and 'u', respectively. These errors have now been corrected in both the PDF and HTML versions of the Article.
View Article and Find Full Text PDF