We have investigated the effects of quantum tunneling on the photodissociation dynamics of ammonia, following below and above barrier photoexcitation of low-lying levels of the ν'(2) umbrella mode of the NH(3) Ã state (NH(3) (Ã)). This barrier separates the local minimum of the vertical Franck–Condon region from the NH(3) (Ã)/NH(3) (X̃) conical intersection (CI) which can be accessed along the N–H stretch coordinate. Two complementary techniques, time-resolved photoelectron spectroscopy (TR-PES) and time-resolved total kinetic energy release spectroscopy (TR-TKER), have been utilized to directly measure, for the first time, vibrational level dependent excited state lifetimes and N–H dissociation time scales as well as photoproduct final energy distributions.
View Article and Find Full Text PDFThe ultrafast excited state relaxation of ammonia is investigated by resonantly exciting specific vibrational modes of the electronically excited NH(3) (Ã) state using three complementary femtosecond (fs) pump-probe techniques: time-resolved photoelectron, ion-yield and photofragment translational spectroscopy. Ammonia can be seen as a prototypical system for studying non-adiabatic dynamics and therefore offers a benchmark species for demonstrating the advantages of combining the aforementioned techniques to probe excited state dynamics, whilst simultaneously illuminating new aspects of ammonia's photochemistry. Time-resolved photoelectron spectroscopy (TRPES) provides direct spectroscopic evidence of σ* mediated relaxation of the NH(3) (Ã) state which manifests itself as coupling of the umbrella (ν(2)) and symmetric N-H stretch (ν(1)) modes in the photoelectron spectra.
View Article and Find Full Text PDFImidazole acts as a subunit in the DNA base adenine and the amino acid histidine-both important biomolecules which display low fluorescence quantum yields following UV excitation. The low fluorescence quantum yields are attributed to competing non-radiative excited state relaxation pathways that operate on ultrafast timescales. Imidazole is investigated here as a model compound due to its accessibility to high level ab initio calculations and time-resolved gas-phase spectroscopic techniques.
View Article and Find Full Text PDFThe ultrafast dynamics of UV-excited imidazole in the gas phase is investigated by theoretical nonadiabatic dynamics simulations and experimental time-resolved photoelectron spectroscopy. The results show that different electronic excited-state relaxation mechanisms occur, depending on the pump wavelength. When imidazole is excited at 239.
View Article and Find Full Text PDFThe role of ultraviolet photoresistance in many biomolecules (e.g., DNA bases and amino acids) has been extensively researched in recent years.
View Article and Find Full Text PDFElectronic relaxation pathways in photoexcited nucleobases have received much theoretical and experimental attention due to their underlying importance to the UV photostability of these biomolecules. Multiple mechanisms with different energetic onsets have been proposed by ab initio calculations yet the majority of experiments to date have only probed the photophysics at a few selected excitation energies. We present femtosecond time-resolved photoelectron spectra (TRPES) of the DNA base adenine in a molecular beam at multiple excitation energies between 4.
View Article and Find Full Text PDF