Publications by authors named "Nicholas L Denton"

Introduction: Persistence in Science, Technology, Engineering, and Mathematics (STEM) may be promoted in underrepresented student populations by implementing an authentic inquiry-team-based learning (ITBL) STEM laboratory course design.

Methods: Between Spring 2021 and Spring 2022, the research team compared junior and senior undergraduates enrolled in an ITBL-based pharmaceutical science lab course to a comparative student population enrolled in a traditionally designed biology lab course. At the end of either STEM lab course, students completed the experimentally validated Persistence in the Sciences (PITS) survey and an open-ended question asking them to recount a moment that validated or questioned their science identity determined the effect of the ITBL STEM lab course design on factors that may impact underrepresented students' indicators of science identity formation and persistence in STEM.

View Article and Find Full Text PDF

Ewing sarcoma is a highly aggressive cancer that promotes the infiltration and activation of pro-tumor M2-like macrophages. Oncolytic virotherapy that selectively infects and destroys cancer cells is a promising option for treating Ewing sarcoma. The effect of tumor macrophages on oncolytic virus therapy, however, is variable among solid tumors and is unknown in Ewing sarcoma.

View Article and Find Full Text PDF

Cancer immunotherapies, widely heralded as transformational for many adult cancer patients, are becoming viable options for selected subsets of pediatric cancer patients. Many therapies are currently being investigated, from immunomodulatory agents to adoptive cell therapy, bispecific T-cell engagers, oncolytic virotherapy, and checkpoint inhibition. One of the most exciting immunotherapies recently FDA approved is the use of CD19 chimeric antigen receptor T cells for pre-B-cell acute lymphoblastic leukemia.

View Article and Find Full Text PDF

Cancer therapy remains a challenge due to toxicity limitations of chemotherapy and radiation therapy. Oncolytic viruses that selectively replicate and destroy cancer cells are of increasing interest. In addition to direct cell lysis, these vectors stimulate an anti-tumor immune response.

View Article and Find Full Text PDF

Progress for improving outcomes in pediatric patients with solid tumors remains slow. In addition, currently available therapies are fraught with numerous side effects, often causing significant life-long morbidity for long-term survivors. The use of viruses to kill tumor cells based on their increased vulnerability to infection is gaining traction, with several viruses moving through early and advanced phase clinical testing.

View Article and Find Full Text PDF

Oncolytic engineered herpes simplex viruses (HSVs) possess many biologic and functional attributes that support their use in clinical trials in children with solid tumors. Tumor cells, in an effort to escape regulatory mechanisms that would impair their growth and progression, have removed many mechanisms that would have protected them from virus infection and eventual virus-mediated destruction. Viruses engineered to exploit this weakness, like mutant HSV, can be safely employed as tumor cell killers, since normal cells retain these antiviral strategies.

View Article and Find Full Text PDF

Multiple studies have indicated that in addition to direct oncolysis, virotherapy promotes an antitumor cytotoxic T cell response important for efficacy. To study this phenomenon further, we tested three syngeneic murine sarcoma models that displayed varied degrees of permissiveness to oncolytic herpes simplex virus replication and cytotoxicity in vitro, with the most permissive being comparable to some human sarcoma tumor lines. The in vivo antitumor effect ranged from no or modest response to complete tumor regression and protection from tumor rechallenge.

View Article and Find Full Text PDF