Tracking species with expanding ranges is crucial to conservation efforts and some typically temperate marine species are spreading northward into the Arctic Ocean. Risso's (Gg) and Pacific white-sided (Lo) dolphins have been documented spreading poleward. Further, they make very similar sounds, so it is difficult for both human analysts and classification algorithms to tell them apart.
View Article and Find Full Text PDFJ Comput Nonlinear Dyn
October 2019
Functional electrical stimulation (FES) is prescribed as a treatment to restore motor function in individuals with neurological impairments. However, the rapid onset of FES-induced muscle fatigue significantly limits its duration of use and limb movement quality. In this paper, an electric motor-assist is proposed to alleviate the fatigue effects by sharing work load with FES.
View Article and Find Full Text PDFDetecting marine mammal vocalizations in underwater acoustic environments and classifying them to species level is typically an arduous manual analysis task for skilled bioacousticians. In recent years, machine learning and other automated algorithms have been explored for quickly detecting and classifying all sound sources in an ambient acoustic environment, but many of these still require a large training dataset compiled through time-intensive manual pre-processing. Here, an application of the signal decomposition technique Empirical Mode Decomposition (EMD) is presented, which does not require knowledge and quickly detects all sound sources in a given recording.
View Article and Find Full Text PDFIEEE ASME Trans Mechatron
August 2017
A widely accepted model of muscle force generation during neuromuscular electrical stimulation (NMES) is a second-order nonlinear musculoskeletal dynamics cascaded to a delayed first-order muscle activation dynamics. However, most nonlinear NMES control methods have either neglected the muscle activation dynamics or used an ad hoc strategies to tackle the muscle activation dynamics, which may not guarantee control stability. We hypothesized that a nonlinear control design that includes muscle activation dynamics can improve the control performance.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
January 2018
A hybrid neuroprosthesis that combines human muscle power, elicited through functional electrical stimulation (FES), with a powered orthosis may be advantageous over a sole FES or a powered exoskeleton-based rehabilitation system. The hybrid system can conceivably overcome torque reduction due to FES-induced muscle fatigue by complementarily using torque from the powered exoskeleton. The second advantage of the hybrid system is that the use of human muscle power can supplement the powered exoskeleton's power (motor torque) requirements; thus, potentially reducing the size and weight of a walking restoration system.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
December 2017
Miniature inertial measurement units (IMUs) are wearable sensors that measure limb segment or joint angles during dynamic movements. However, IMUs are generally prone to drift, external magnetic interference, and measurement noise. This paper presents a new class of nonlinear state estimation technique called state-dependent coefficient (SDC) estimation to accurately predict joint angles from IMU measurements.
View Article and Find Full Text PDFIntroduction: Optimal frequency modulation during functional electrical stimulation (FES) may minimize or delay the onset of FES-induced muscle fatigue.
Methods: An offline dynamic optimization method, constrained to a modified Hill-Huxley model, was used to determine the minimum number of pulses that would maintain a constant desired isometric contraction force.
Results: Six able-bodied participants were recruited for the experiments, and their quadriceps muscles were stimulated while they sat on a leg extension machine.
Front Bioeng Biotechnol
January 2016
A hybrid neuroprosthesis that uses an electric motor-based wearable exoskeleton and functional electrical stimulation (FES) has a promising potential to restore walking in persons with paraplegia. A hybrid actuation structure introduces effector redundancy, making its automatic control a challenging task because multiple muscles and additional electric motor need to be coordinated. Inspired by the muscle synergy principle, we designed a low dimensional controller to control multiple effectors: FES of multiple muscles and electric motors.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
November 2015
Electromechanical delay (EMD) and uncertain nonlinear muscle dynamics can cause destabilizing effects and performance loss during closed-loop control of neuromuscular electrical stimulation (NMES). Linear control methods for NMES often perform poorly due to these technical challenges. A new predictor-based closed-loop controller called proportional integral derivative controller with delay compensation (PID-DC) is presented in this paper.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
September 2015
Through the application of functional electrical stimulation (FES) individuals with paraplegia can regain lost walking function. However, due to the rapid onset of muscle fatigue, the walking duration obtained with an FES-based neuroprosthesis is often relatively short. The rapid muscle fatigue can be compensated for by using a hybrid system that uses both FES and an active orthosis.
View Article and Find Full Text PDF