Innovations in synthetic chemistry have enabled the discovery of many breakthrough therapies that have improved human health over the past century. In the face of increasing challenges in the pharmaceutical sector, continued innovation in chemistry is required to drive the discovery of the next wave of medicines. Novel synthetic methods not only unlock access to previously unattainable chemical matter, but also inspire new concepts as to how we design and build chemical matter.
View Article and Find Full Text PDFA series of dimeric macrocyclic compounds were prepared and evaluated as antagonists for inhibitor of apoptosis proteins. The most potent analogue 11, which binds to XIAP and c-IAP proteins with high affinity and induces caspase-3 activation and ultimately cell apoptosis, inhibits growth of human melanoma and colorectal cell lines at low nanomolar concentrations. Furthermore, compound 11 demonstrated significant antitumor activity in the A875 human melanoma xenograft model at doses as low as 2 mg/kg on a q3d schedule.
View Article and Find Full Text PDFAffinity selection screening of macrocycle libraries derived from DNA-programmed chemistry identified XIAP BIR2 and BIR3 domain inhibitors that displace bound pro-apoptotic caspases. X-ray cocrystal structures of key compounds with XIAP BIR2 suggested potency-enhancing structural modifications. Optimization of dimeric macrocycles with similar affinity for both domains were potent pro-apoptotic agents in cancer cell lines and efficacious in shrinking tumors in a mouse xenograft model.
View Article and Find Full Text PDFIntroduction: TPN729MA is a newly developed phosphodiesterase type 5 inhibitor (PDE5i) for the treatment of erectile dysfunction, which offers potential for greater selectivity and longer duration of action than PDE5i in current clinical use.
Aim: We investigated the in vitro inhibitory potency and selectivity of TPN729MA on PDE isozymes, and its efficacy in animal models.
Methods: The inhibition of 11 human recombinant PDEs by TPN729MA, sildenafil, and tadalafil were determined using radioimmunoassay.
36 new compounds with the typical skeleton of 4-anilino-5-vinyl/ethynyl pyrimidine, 4-anilino-3-cyano-5-vinyl/ethynyl/phenyl pyridine, and m-amino-N-phenylbenzamide, are designed, synthesized and selectively tested on EGFR, ErbB-2 kinases, and A-549, HL60 cells growth inhibition. Results from the bioactivity and chemical structures yield preliminary structure-activity relationships (SARs). The most potent 5-ethynylpyrimidine derivative 20a has an IC50 value of 45 nM to EGFR kinase.
View Article and Find Full Text PDFCyclic nucleotide phosphodiesterase type 5 (PDE5) is a prime drug target for treating the diseases associated with a lower level of the cyclic guanosine monophosphate (cGMP), which is a specific substrate for PDE5 hydrolysis. Here we report a series of novel PDE5 inhibitors with the new scaffold of the monocyclic pyrimidin-4(3H)-one ring developed using the structure-based discovery strategy. In total, 37 derivatives of the pyrimidin-4(3H)-ones, were designed, synthesized, and evaluated for their inhibitory activities to PDE5, resulting in 25 compounds with IC50 ranging from 1 to 100 nM and 11 compounds with IC50 ranging from 1 to 10 nM.
View Article and Find Full Text PDFMacrocyclic natural products have evolved to fulfil numerous biochemical functions, and their profound pharmacological properties have led to their development as drugs. A macrocycle provides diverse functionality and stereochemical complexity in a conformationally pre-organized ring structure. This can result in high affinity and selectivity for protein targets, while preserving sufficient bioavailability to reach intracellular locations.
View Article and Find Full Text PDFA library, evaluating a range of piperazines, piperidines and acyclic amines, as replacements for the 4-hydroxy-4-phenylpiperidine moiety in lead (1b) was prepared. These efforts identified the 4-((N)-benzimidazolone)piperidine analogue (2a) which was further optimised using classical single-compound synthesis to yield the 3-((N)-morpholino)azetidine (2j). Conformationally constrained analogues of (2j), generally offered no potency advantage in this particular series.
View Article and Find Full Text PDF